Benjamin Siddiqui, Chandra Shekhar Yadav, Mohd Akil, Mohd Faiyyaz, Abdul Rahman Khan, Naseem Ahmad, Firoj Hassan, Mohd Irfan Azad, Mohammad Owais, Malik Nasibullah, Iqbal Azad
{"title":"人工智能在计算机辅助药物设计(CADD)工具中发现有效的生物活性小分子:传统到现代方法。","authors":"Benjamin Siddiqui, Chandra Shekhar Yadav, Mohd Akil, Mohd Faiyyaz, Abdul Rahman Khan, Naseem Ahmad, Firoj Hassan, Mohd Irfan Azad, Mohammad Owais, Malik Nasibullah, Iqbal Azad","doi":"10.2174/0113862073334062241015043343","DOIUrl":null,"url":null,"abstract":"<p><p>Computer-Aided Drug Design (CADD) entails designing molecules that could potentially interact with a specific biomolecular target and promising their potential binding. The stereo- arrangement and stereo-selectivity of small molecules (SMs)--based chemotherapeutic agents significantly influence their therapeutic potential and enhance their therapeutic advantages. CADD has been a well-established field for decades, but recent years have observed a significant shift toward acceptance of computational approaches in both academia and the pharmaceutical industry. Recently, artificial intelligence (AI), bioinformatics, and data science have played a significant role in drug discovery to accelerate the development of effective treatments, reduce expenses, and eliminate the need for animal testing. This shift can be attributed to the availability of extensive data on molecular properties, binding to therapeutic targets, and their 3D structures. Increasing interest from legislators, pharmaceutical companies, and academic and industrial scientists is evidence that AI is reshaping the drug discovery industry. To achieve success in drug discovery, it is necessary to optimize pharmacodynamic, pharmacokinetic, and clinical outcome-related properties. Moreover, the advent of on-demand virtual libraries containing billions of drug-like SMs, coupled with abundant computing capacities, has further facilitated this transition. To fully capitalize on these resources, rapid computational methods are needed for effective ligand screening. This includes structure-based virtual screening (SBVS) of vast chemical spaces, aided by fast iterative screening approaches. At the same time, advances in deep learning (DL) predictions of ligand properties and target activities have become very helpful, as they no longer need information about the structure of the receptor. This study examines recent progress in the drug discovery and development (DDD) approach, their potential to reshape the entire DDD process, and the challenges they face. This review examines the role of artificial intelligence as a fundamental component in drug discovery, particularly focusing on small molecules. It also discusses how AI-driven approaches can expedite the identification of diverse, potent, target-specific, and drug-like ligands for protein targets. This advancement has the potential to make drug discovery more efficient and cost-effective, ultimately facilitating the development of safer and more effective therapeutics.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Computer-Aided Drug Design (CADD) Tools for the Finding of Potent Biologically Active Small Molecules: Traditional to Modern Approach.\",\"authors\":\"Benjamin Siddiqui, Chandra Shekhar Yadav, Mohd Akil, Mohd Faiyyaz, Abdul Rahman Khan, Naseem Ahmad, Firoj Hassan, Mohd Irfan Azad, Mohammad Owais, Malik Nasibullah, Iqbal Azad\",\"doi\":\"10.2174/0113862073334062241015043343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computer-Aided Drug Design (CADD) entails designing molecules that could potentially interact with a specific biomolecular target and promising their potential binding. The stereo- arrangement and stereo-selectivity of small molecules (SMs)--based chemotherapeutic agents significantly influence their therapeutic potential and enhance their therapeutic advantages. CADD has been a well-established field for decades, but recent years have observed a significant shift toward acceptance of computational approaches in both academia and the pharmaceutical industry. Recently, artificial intelligence (AI), bioinformatics, and data science have played a significant role in drug discovery to accelerate the development of effective treatments, reduce expenses, and eliminate the need for animal testing. This shift can be attributed to the availability of extensive data on molecular properties, binding to therapeutic targets, and their 3D structures. Increasing interest from legislators, pharmaceutical companies, and academic and industrial scientists is evidence that AI is reshaping the drug discovery industry. To achieve success in drug discovery, it is necessary to optimize pharmacodynamic, pharmacokinetic, and clinical outcome-related properties. Moreover, the advent of on-demand virtual libraries containing billions of drug-like SMs, coupled with abundant computing capacities, has further facilitated this transition. To fully capitalize on these resources, rapid computational methods are needed for effective ligand screening. This includes structure-based virtual screening (SBVS) of vast chemical spaces, aided by fast iterative screening approaches. At the same time, advances in deep learning (DL) predictions of ligand properties and target activities have become very helpful, as they no longer need information about the structure of the receptor. This study examines recent progress in the drug discovery and development (DDD) approach, their potential to reshape the entire DDD process, and the challenges they face. This review examines the role of artificial intelligence as a fundamental component in drug discovery, particularly focusing on small molecules. It also discusses how AI-driven approaches can expedite the identification of diverse, potent, target-specific, and drug-like ligands for protein targets. This advancement has the potential to make drug discovery more efficient and cost-effective, ultimately facilitating the development of safer and more effective therapeutics.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073334062241015043343\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073334062241015043343","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Artificial Intelligence in Computer-Aided Drug Design (CADD) Tools for the Finding of Potent Biologically Active Small Molecules: Traditional to Modern Approach.
Computer-Aided Drug Design (CADD) entails designing molecules that could potentially interact with a specific biomolecular target and promising their potential binding. The stereo- arrangement and stereo-selectivity of small molecules (SMs)--based chemotherapeutic agents significantly influence their therapeutic potential and enhance their therapeutic advantages. CADD has been a well-established field for decades, but recent years have observed a significant shift toward acceptance of computational approaches in both academia and the pharmaceutical industry. Recently, artificial intelligence (AI), bioinformatics, and data science have played a significant role in drug discovery to accelerate the development of effective treatments, reduce expenses, and eliminate the need for animal testing. This shift can be attributed to the availability of extensive data on molecular properties, binding to therapeutic targets, and their 3D structures. Increasing interest from legislators, pharmaceutical companies, and academic and industrial scientists is evidence that AI is reshaping the drug discovery industry. To achieve success in drug discovery, it is necessary to optimize pharmacodynamic, pharmacokinetic, and clinical outcome-related properties. Moreover, the advent of on-demand virtual libraries containing billions of drug-like SMs, coupled with abundant computing capacities, has further facilitated this transition. To fully capitalize on these resources, rapid computational methods are needed for effective ligand screening. This includes structure-based virtual screening (SBVS) of vast chemical spaces, aided by fast iterative screening approaches. At the same time, advances in deep learning (DL) predictions of ligand properties and target activities have become very helpful, as they no longer need information about the structure of the receptor. This study examines recent progress in the drug discovery and development (DDD) approach, their potential to reshape the entire DDD process, and the challenges they face. This review examines the role of artificial intelligence as a fundamental component in drug discovery, particularly focusing on small molecules. It also discusses how AI-driven approaches can expedite the identification of diverse, potent, target-specific, and drug-like ligands for protein targets. This advancement has the potential to make drug discovery more efficient and cost-effective, ultimately facilitating the development of safer and more effective therapeutics.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.