{"title":"基于多视域自适应的多尺度卷积条件可逆判别器在跨主体脑电图情绪识别中的应用。","authors":"Sivasaravana Babu S, Prabhu Venkatesan, Parthasarathy Velusamy, Saravana Kumar Ganesan","doi":"10.1007/s11571-024-10193-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cross subject Electroencephalogram (EEG) emotion recognition refers to the process of utilizing electroencephalogram signals to recognize and classify emotions across different individuals. It tracks neural electrical patterns, and by analyzing these signals, it's possible to infer a person's emotional state. The objective of cross-subject recognition is to create models or algorithms that can reliably detect emotions in both the same person and several other people. Accurately predicting emotions poses challenges due to dynamic traits. Models struggle with feature extraction, convergence, and negative transfer issues, hindering cross subject emotion recognition. The proposed model employs thorough signal preprocessing, Short-Time Geodesic Flow Kernel Fourier Transform (STGFKFT) for feature extraction, enhancing classifiers' accuracy. Multi-view sheaf attention improves feature discrimination, while the Multi-Scale Convolutional Conditional Invertible Puma Discriminator Neural Network (MSCCIPDNN) framework ensures generalization. Efficient computational techniques and the puma optimization algorithm enhance model robustness and convergence. The suggested framework demonstrates extraordinary success with high accuracy, of 99.5%, 99% and 99.50% for SEED, SEED-IV, and DEAP dataset sequentially. By incorporating these techniques, the proposed method aims to precisely recognition emotions, and accurately captures the features, thereby overcoming the limitations of existing methodologies.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"23"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-view domain adaption based multi-scale convolutional conditional invertible discriminator for cross-subject electroencephalogram emotion recognition.\",\"authors\":\"Sivasaravana Babu S, Prabhu Venkatesan, Parthasarathy Velusamy, Saravana Kumar Ganesan\",\"doi\":\"10.1007/s11571-024-10193-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cross subject Electroencephalogram (EEG) emotion recognition refers to the process of utilizing electroencephalogram signals to recognize and classify emotions across different individuals. It tracks neural electrical patterns, and by analyzing these signals, it's possible to infer a person's emotional state. The objective of cross-subject recognition is to create models or algorithms that can reliably detect emotions in both the same person and several other people. Accurately predicting emotions poses challenges due to dynamic traits. Models struggle with feature extraction, convergence, and negative transfer issues, hindering cross subject emotion recognition. The proposed model employs thorough signal preprocessing, Short-Time Geodesic Flow Kernel Fourier Transform (STGFKFT) for feature extraction, enhancing classifiers' accuracy. Multi-view sheaf attention improves feature discrimination, while the Multi-Scale Convolutional Conditional Invertible Puma Discriminator Neural Network (MSCCIPDNN) framework ensures generalization. Efficient computational techniques and the puma optimization algorithm enhance model robustness and convergence. The suggested framework demonstrates extraordinary success with high accuracy, of 99.5%, 99% and 99.50% for SEED, SEED-IV, and DEAP dataset sequentially. By incorporating these techniques, the proposed method aims to precisely recognition emotions, and accurately captures the features, thereby overcoming the limitations of existing methodologies.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"23\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10193-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10193-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Multi-view domain adaption based multi-scale convolutional conditional invertible discriminator for cross-subject electroencephalogram emotion recognition.
Cross subject Electroencephalogram (EEG) emotion recognition refers to the process of utilizing electroencephalogram signals to recognize and classify emotions across different individuals. It tracks neural electrical patterns, and by analyzing these signals, it's possible to infer a person's emotional state. The objective of cross-subject recognition is to create models or algorithms that can reliably detect emotions in both the same person and several other people. Accurately predicting emotions poses challenges due to dynamic traits. Models struggle with feature extraction, convergence, and negative transfer issues, hindering cross subject emotion recognition. The proposed model employs thorough signal preprocessing, Short-Time Geodesic Flow Kernel Fourier Transform (STGFKFT) for feature extraction, enhancing classifiers' accuracy. Multi-view sheaf attention improves feature discrimination, while the Multi-Scale Convolutional Conditional Invertible Puma Discriminator Neural Network (MSCCIPDNN) framework ensures generalization. Efficient computational techniques and the puma optimization algorithm enhance model robustness and convergence. The suggested framework demonstrates extraordinary success with high accuracy, of 99.5%, 99% and 99.50% for SEED, SEED-IV, and DEAP dataset sequentially. By incorporating these techniques, the proposed method aims to precisely recognition emotions, and accurately captures the features, thereby overcoming the limitations of existing methodologies.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.