{"title":"水藻中糖基神经酰胺的鉴定和结构表征:来自TLC和NMR技术的见解。","authors":"Matheus Pires Miranda","doi":"10.1016/j.carres.2024.109374","DOIUrl":null,"url":null,"abstract":"<p><p>Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells. The identification of this class of compounds can be carried out using simple techniques such as thin layer chromatography (TLC) or more sophisticated techniques such as nuclear magnetic resonance (NMR), providing different information depending on the technique used. Therefore, this work aimed to identify the presence of cerebrosides in different tissues of Holothuria (Halodeima) grisea. TLC analysis and separation on a silica column made it possible to accurately identify the positive fractions for cerebrosides. This selectivity is crucial to ensure that the compounds identified are genuine cerebrosides, eliminating interference from other non-pertinent bands. NMR spectroscopy analyses confirmed the presence of glucosylceramide in the tissues studied. The identification of a β-glucose linked to the ceramide, with specific structural characteristics such as hydroxyl on the 3' carbon of the sphingosine and a double bond between the 4' and 5' carbons, highlights the accuracy of the structural determination obtained with the techniques used.</p>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"549 ","pages":"109374"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques.\",\"authors\":\"Matheus Pires Miranda\",\"doi\":\"10.1016/j.carres.2024.109374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells. The identification of this class of compounds can be carried out using simple techniques such as thin layer chromatography (TLC) or more sophisticated techniques such as nuclear magnetic resonance (NMR), providing different information depending on the technique used. Therefore, this work aimed to identify the presence of cerebrosides in different tissues of Holothuria (Halodeima) grisea. TLC analysis and separation on a silica column made it possible to accurately identify the positive fractions for cerebrosides. This selectivity is crucial to ensure that the compounds identified are genuine cerebrosides, eliminating interference from other non-pertinent bands. NMR spectroscopy analyses confirmed the presence of glucosylceramide in the tissues studied. The identification of a β-glucose linked to the ceramide, with specific structural characteristics such as hydroxyl on the 3' carbon of the sphingosine and a double bond between the 4' and 5' carbons, highlights the accuracy of the structural determination obtained with the techniques used.</p>\",\"PeriodicalId\":9415,\"journal\":{\"name\":\"Carbohydrate Research\",\"volume\":\"549 \",\"pages\":\"109374\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.carres.2024.109374\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carres.2024.109374","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques.
Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells. The identification of this class of compounds can be carried out using simple techniques such as thin layer chromatography (TLC) or more sophisticated techniques such as nuclear magnetic resonance (NMR), providing different information depending on the technique used. Therefore, this work aimed to identify the presence of cerebrosides in different tissues of Holothuria (Halodeima) grisea. TLC analysis and separation on a silica column made it possible to accurately identify the positive fractions for cerebrosides. This selectivity is crucial to ensure that the compounds identified are genuine cerebrosides, eliminating interference from other non-pertinent bands. NMR spectroscopy analyses confirmed the presence of glucosylceramide in the tissues studied. The identification of a β-glucose linked to the ceramide, with specific structural characteristics such as hydroxyl on the 3' carbon of the sphingosine and a double bond between the 4' and 5' carbons, highlights the accuracy of the structural determination obtained with the techniques used.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".