{"title":"流体流动的生物传感-来自PIEZO1的教训。","authors":"David J Beech, Charline Fagnen, Antreas C Kalli","doi":"10.1007/s12551-024-01246-x","DOIUrl":null,"url":null,"abstract":"<p><p>The flow sensing endothelial cell lining of blood and lymphatic vessels is essential in vertebrates. While the mechanisms are still mysterious in many regards, several critical components became apparent through molecular biology studies. In this article, we focus on PIEZO1, which forms unusual force-sensing ion channels capable of rapid transduction of force into biological effect. We describe current knowledge and emerging challenges. We suggest the idea of using computation to construct the flow sensing mechanism of endothelium to advance understanding, develop testable hypotheses and potentially design novel therapeutic strategies and synthetic flow sensing devices.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 6","pages":"871-873"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735714/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biological sensing of fluid flow-lessons from PIEZO1.\",\"authors\":\"David J Beech, Charline Fagnen, Antreas C Kalli\",\"doi\":\"10.1007/s12551-024-01246-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The flow sensing endothelial cell lining of blood and lymphatic vessels is essential in vertebrates. While the mechanisms are still mysterious in many regards, several critical components became apparent through molecular biology studies. In this article, we focus on PIEZO1, which forms unusual force-sensing ion channels capable of rapid transduction of force into biological effect. We describe current knowledge and emerging challenges. We suggest the idea of using computation to construct the flow sensing mechanism of endothelium to advance understanding, develop testable hypotheses and potentially design novel therapeutic strategies and synthetic flow sensing devices.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"16 6\",\"pages\":\"871-873\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735714/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-024-01246-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01246-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Biological sensing of fluid flow-lessons from PIEZO1.
The flow sensing endothelial cell lining of blood and lymphatic vessels is essential in vertebrates. While the mechanisms are still mysterious in many regards, several critical components became apparent through molecular biology studies. In this article, we focus on PIEZO1, which forms unusual force-sensing ion channels capable of rapid transduction of force into biological effect. We describe current knowledge and emerging challenges. We suggest the idea of using computation to construct the flow sensing mechanism of endothelium to advance understanding, develop testable hypotheses and potentially design novel therapeutic strategies and synthetic flow sensing devices.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation