一步生物打印的内皮化,自我支持的动脉和静脉网络。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Betty Cai, David Kilian, Sadegh Ghorbani, Julien Roth, Alexis J Seymour, Lucia Giulia Brunel, Daniel Ramos Mejia, Ricardo J Rios, Isabella M Szabo, Sean Chryz Iranzo, Andy Perez, Rameshwar R Rao, Sungchul Shin, Sarah Heilshorn
{"title":"一步生物打印的内皮化,自我支持的动脉和静脉网络。","authors":"Betty Cai, David Kilian, Sadegh Ghorbani, Julien Roth, Alexis J Seymour, Lucia Giulia Brunel, Daniel Ramos Mejia, Ricardo J Rios, Isabella M Szabo, Sean Chryz Iranzo, Andy Perez, Rameshwar R Rao, Sungchul Shin, Sarah Heilshorn","doi":"10.1088/1758-5090/adab26","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process. In this strategy, a gelatin microparticle sacrificial ink delivering both cells and crosslinkers is extruded into a crosslinkable gel precursor support bath. A self-supporting, perfusable structure is formed by diffusion-induced crosslinking, after which the sacrificial ink is melted to allow cell release and adhesion to the printed lumen. This approach produces a uniform cell lining throughout networks with complex branching geometries, which are challenging to uniformly and efficiently endothelialize using conventional perfusion-based approaches. Furthermore, the biofabrication process enables high cell viability (>90%) and the formation of a confluent endothelial layer providing vascular-mimetic barrier function and shear stress response. Leveraging this strategy, we demonstrate for the first time the patterning of multiple endothelial cell types, including arterial and venous cells, within a single arterial-venous-like network. Altogether, this strategy enables the fabrication of multi-cellular engineered vasculature with enhanced geometric complexity and phenotypic heterogeneity.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step bioprinting of endothelialized, self-supporting arterial and venous networks.\",\"authors\":\"Betty Cai, David Kilian, Sadegh Ghorbani, Julien Roth, Alexis J Seymour, Lucia Giulia Brunel, Daniel Ramos Mejia, Ricardo J Rios, Isabella M Szabo, Sean Chryz Iranzo, Andy Perez, Rameshwar R Rao, Sungchul Shin, Sarah Heilshorn\",\"doi\":\"10.1088/1758-5090/adab26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process. In this strategy, a gelatin microparticle sacrificial ink delivering both cells and crosslinkers is extruded into a crosslinkable gel precursor support bath. A self-supporting, perfusable structure is formed by diffusion-induced crosslinking, after which the sacrificial ink is melted to allow cell release and adhesion to the printed lumen. This approach produces a uniform cell lining throughout networks with complex branching geometries, which are challenging to uniformly and efficiently endothelialize using conventional perfusion-based approaches. Furthermore, the biofabrication process enables high cell viability (>90%) and the formation of a confluent endothelial layer providing vascular-mimetic barrier function and shear stress response. Leveraging this strategy, we demonstrate for the first time the patterning of multiple endothelial cell types, including arterial and venous cells, within a single arterial-venous-like network. Altogether, this strategy enables the fabrication of multi-cellular engineered vasculature with enhanced geometric complexity and phenotypic heterogeneity.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/adab26\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adab26","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物制造的进步使模拟血管系统的自由形式可灌注网络的产生成为可能。然而,这些复杂的血管样网络的有效内皮化仍然存在关键挑战,包括细胞均匀性、播种效率和多种细胞类型的能力。为了克服这些挑战,我们提出了一种集成的制造和内皮化策略,使用基于扩散的嵌入式3D生物打印工艺直接生成分支的内皮细胞网络。在这种策略中,一种传递细胞和交联剂的明胶微粒牺牲墨水被挤进交联凝胶前体支撑液中。通过扩散诱导交联形成一种自我支撑的、可渗透的结构,之后,牺牲的墨水被熔化,使细胞释放并粘附到印刷的管腔上。这种方法在具有复杂分支几何形状的网络中产生均匀的细胞衬里,这是传统的基于灌注的方法均匀有效地内皮化的挑战。此外,这种生物制造工艺能够实现高细胞活力(>90%),形成融合的内皮层,提供血管模拟屏障功能和剪切应力响应。利用这一策略,我们首次证明了多种内皮细胞类型的模式,包括动脉和静脉细胞,在一个单一的动静脉样网络。总之,这种策略使多细胞工程血管系统的制造具有增强的几何复杂性和表型异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-step bioprinting of endothelialized, self-supporting arterial and venous networks.

Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process. In this strategy, a gelatin microparticle sacrificial ink delivering both cells and crosslinkers is extruded into a crosslinkable gel precursor support bath. A self-supporting, perfusable structure is formed by diffusion-induced crosslinking, after which the sacrificial ink is melted to allow cell release and adhesion to the printed lumen. This approach produces a uniform cell lining throughout networks with complex branching geometries, which are challenging to uniformly and efficiently endothelialize using conventional perfusion-based approaches. Furthermore, the biofabrication process enables high cell viability (>90%) and the formation of a confluent endothelial layer providing vascular-mimetic barrier function and shear stress response. Leveraging this strategy, we demonstrate for the first time the patterning of multiple endothelial cell types, including arterial and venous cells, within a single arterial-venous-like network. Altogether, this strategy enables the fabrication of multi-cellular engineered vasculature with enhanced geometric complexity and phenotypic heterogeneity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信