Jorge R. Soliz-Rueda, Raúl López-Fernández-Sobrino, Harriët Schellekens, Francisca Isabel Bravo, Manuel Suárez, Miquel Mulero, Begoña Muguerza
{"title":"在不同时间喂食自助饮食和给予甜食的雄性Fischer 344大鼠的时钟系统中断:葡萄籽黄烷醇的授时体作用。","authors":"Jorge R. Soliz-Rueda, Raúl López-Fernández-Sobrino, Harriët Schellekens, Francisca Isabel Bravo, Manuel Suárez, Miquel Mulero, Begoña Muguerza","doi":"10.1002/biof.70000","DOIUrl":null,"url":null,"abstract":"<p>Current lifestyles include calorie-dense diets and late-night food intake, which can lead to circadian misalignment. Our group recently demonstrated that sweet treats before bedtime alter the clock system in healthy rats, increasing metabolic risk factors. Therefore, we aimed to assess the impact of the sweet treat consumption time on the clock system in rats fed a cafeteria diet (CAF). Moreover, since flavanols have demonstrated beneficial effects in metabolic disorders and clock gene modulation, we also investigated whether these phenolic compounds can restore the circadian disruption caused by these altered dietary patterns. For this, 64 Fisher rats were fed CAF for 9 weeks. In the last 4 weeks, animals were daily administered a low dose of sugar (160 mg/kg) as a sweet treat at 8 a.m. (ZT0) or 8 p.m. (ZT12). Two other groups received 25 mg/kg of grape seed flavanols in addition to sweet treats. Finally, the animals were sacrificed at different time points (9 a.m., 3 p.m., 9 p.m., and 3 a.m.). The results showed that metabolic and circadian disturbances by CAF may be influenced by the time of sugar administration, slightly reinforcing the alterations in diurnal rhythmicity of serum biochemical parameters, hormones, and hypothalamic genes with bedtime snacking. Flavanols improved metabolic health and restored the oscillation of biochemical parameters, hormones, and clock and appetite-signaling genes, showing greater effects at ZT12. These results highlight the importance of meal timing in influencing physiological and metabolic outcomes, even under calorie-dense diets. Moreover, they also suggest the <i>zeitgeber</i> role of flavanols, modulating the clock system and contributing to an improved metabolic profile under different feeding pattern conditions.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"51 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clock system disruption in male Fischer 344 rats fed cafeteria diet and administered sweet treats at different times: The zeitgeber role of grape seed flavanols\",\"authors\":\"Jorge R. Soliz-Rueda, Raúl López-Fernández-Sobrino, Harriët Schellekens, Francisca Isabel Bravo, Manuel Suárez, Miquel Mulero, Begoña Muguerza\",\"doi\":\"10.1002/biof.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current lifestyles include calorie-dense diets and late-night food intake, which can lead to circadian misalignment. Our group recently demonstrated that sweet treats before bedtime alter the clock system in healthy rats, increasing metabolic risk factors. Therefore, we aimed to assess the impact of the sweet treat consumption time on the clock system in rats fed a cafeteria diet (CAF). Moreover, since flavanols have demonstrated beneficial effects in metabolic disorders and clock gene modulation, we also investigated whether these phenolic compounds can restore the circadian disruption caused by these altered dietary patterns. For this, 64 Fisher rats were fed CAF for 9 weeks. In the last 4 weeks, animals were daily administered a low dose of sugar (160 mg/kg) as a sweet treat at 8 a.m. (ZT0) or 8 p.m. (ZT12). Two other groups received 25 mg/kg of grape seed flavanols in addition to sweet treats. Finally, the animals were sacrificed at different time points (9 a.m., 3 p.m., 9 p.m., and 3 a.m.). The results showed that metabolic and circadian disturbances by CAF may be influenced by the time of sugar administration, slightly reinforcing the alterations in diurnal rhythmicity of serum biochemical parameters, hormones, and hypothalamic genes with bedtime snacking. Flavanols improved metabolic health and restored the oscillation of biochemical parameters, hormones, and clock and appetite-signaling genes, showing greater effects at ZT12. These results highlight the importance of meal timing in influencing physiological and metabolic outcomes, even under calorie-dense diets. Moreover, they also suggest the <i>zeitgeber</i> role of flavanols, modulating the clock system and contributing to an improved metabolic profile under different feeding pattern conditions.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biof.70000\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.70000","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Clock system disruption in male Fischer 344 rats fed cafeteria diet and administered sweet treats at different times: The zeitgeber role of grape seed flavanols
Current lifestyles include calorie-dense diets and late-night food intake, which can lead to circadian misalignment. Our group recently demonstrated that sweet treats before bedtime alter the clock system in healthy rats, increasing metabolic risk factors. Therefore, we aimed to assess the impact of the sweet treat consumption time on the clock system in rats fed a cafeteria diet (CAF). Moreover, since flavanols have demonstrated beneficial effects in metabolic disorders and clock gene modulation, we also investigated whether these phenolic compounds can restore the circadian disruption caused by these altered dietary patterns. For this, 64 Fisher rats were fed CAF for 9 weeks. In the last 4 weeks, animals were daily administered a low dose of sugar (160 mg/kg) as a sweet treat at 8 a.m. (ZT0) or 8 p.m. (ZT12). Two other groups received 25 mg/kg of grape seed flavanols in addition to sweet treats. Finally, the animals were sacrificed at different time points (9 a.m., 3 p.m., 9 p.m., and 3 a.m.). The results showed that metabolic and circadian disturbances by CAF may be influenced by the time of sugar administration, slightly reinforcing the alterations in diurnal rhythmicity of serum biochemical parameters, hormones, and hypothalamic genes with bedtime snacking. Flavanols improved metabolic health and restored the oscillation of biochemical parameters, hormones, and clock and appetite-signaling genes, showing greater effects at ZT12. These results highlight the importance of meal timing in influencing physiological and metabolic outcomes, even under calorie-dense diets. Moreover, they also suggest the zeitgeber role of flavanols, modulating the clock system and contributing to an improved metabolic profile under different feeding pattern conditions.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.