{"title":"蛋白质靶标搜索:DNA结合位点附近的扩散关联/解离自由能景观。","authors":"Biao Wan, Jin Yu","doi":"10.1016/j.bpj.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements. We also show that the sequence-dependent protein sliding or stepping patterns along DNA are regulated by collective interfacial HB dynamics, which also determines the ruggedness of the protein diffusion free energy landscape on the local DNA. In comparison, protein association or binding with DNA are generically dictated by the protein-DNA electrostatic interactions, with an interaction zone of nanometers around DNA. Extra degrees of freedom (DOFs) of the protein such as rotations and conformational fluctuations can be well accommodated within the protein-DNA electrostatic interaction zone. As such we demonstrate that the protein binding or association free energy profiling along DNA smoothens over the 1D diffusion free energy landscape, which leads to population variations for an order of magnitude upon a marginal free energetic smoothening around the specific or consensus sites. We further show that the protein unbinding or dissociation from a comparatively high-binding affinity DNA site is dominated by lateral diffusion to the flanking low-affinity sites. The results predict that experimental characterizations on the relative protein-DNA binding affinities or population profiling on the DNA are systematically and physically impacted by the extra DOFs of protein motions aside from 1D translation or helical tracking, as well as from flanking DNA sequences due to protein 1D diffusion and non-specific binding/unbinding.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein Target Search Diffusion-association/dissociation Free Energy Landscape around DNA Binding Site with Flanking Sequences.\",\"authors\":\"Biao Wan, Jin Yu\",\"doi\":\"10.1016/j.bpj.2025.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements. We also show that the sequence-dependent protein sliding or stepping patterns along DNA are regulated by collective interfacial HB dynamics, which also determines the ruggedness of the protein diffusion free energy landscape on the local DNA. In comparison, protein association or binding with DNA are generically dictated by the protein-DNA electrostatic interactions, with an interaction zone of nanometers around DNA. Extra degrees of freedom (DOFs) of the protein such as rotations and conformational fluctuations can be well accommodated within the protein-DNA electrostatic interaction zone. As such we demonstrate that the protein binding or association free energy profiling along DNA smoothens over the 1D diffusion free energy landscape, which leads to population variations for an order of magnitude upon a marginal free energetic smoothening around the specific or consensus sites. We further show that the protein unbinding or dissociation from a comparatively high-binding affinity DNA site is dominated by lateral diffusion to the flanking low-affinity sites. The results predict that experimental characterizations on the relative protein-DNA binding affinities or population profiling on the DNA are systematically and physically impacted by the extra DOFs of protein motions aside from 1D translation or helical tracking, as well as from flanking DNA sequences due to protein 1D diffusion and non-specific binding/unbinding.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2025.01.005\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.01.005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Protein Target Search Diffusion-association/dissociation Free Energy Landscape around DNA Binding Site with Flanking Sequences.
In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements. We also show that the sequence-dependent protein sliding or stepping patterns along DNA are regulated by collective interfacial HB dynamics, which also determines the ruggedness of the protein diffusion free energy landscape on the local DNA. In comparison, protein association or binding with DNA are generically dictated by the protein-DNA electrostatic interactions, with an interaction zone of nanometers around DNA. Extra degrees of freedom (DOFs) of the protein such as rotations and conformational fluctuations can be well accommodated within the protein-DNA electrostatic interaction zone. As such we demonstrate that the protein binding or association free energy profiling along DNA smoothens over the 1D diffusion free energy landscape, which leads to population variations for an order of magnitude upon a marginal free energetic smoothening around the specific or consensus sites. We further show that the protein unbinding or dissociation from a comparatively high-binding affinity DNA site is dominated by lateral diffusion to the flanking low-affinity sites. The results predict that experimental characterizations on the relative protein-DNA binding affinities or population profiling on the DNA are systematically and physically impacted by the extra DOFs of protein motions aside from 1D translation or helical tracking, as well as from flanking DNA sequences due to protein 1D diffusion and non-specific binding/unbinding.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.