William M G Parker, Justin W Adams, David P Hocking, Erich M G Fitzgerald, Geoff Shaw, Marilyn B Renfree, Alistair R Evans
{"title":"同步加速器x射线荧光显微镜揭示了有袋动物牙齿中微量元素的生活史。","authors":"William M G Parker, Justin W Adams, David P Hocking, Erich M G Fitzgerald, Geoff Shaw, Marilyn B Renfree, Alistair R Evans","doi":"10.1007/s12011-024-04502-z","DOIUrl":null,"url":null,"abstract":"<p><p>As teeth develop, their mineralised composition is a bio-recorder of diet, environment, and growth. High-resolution elemental mapping provides a tool to reveal records of life history within teeth. The relative concentrations of a range of trace elements change between in utero development, birth, and weaning in eutherian mammals. Marsupials, however, have a different mode of development: altricial birth and growth within the pouch facilitated by compositional transitions in milk. How these differences alter patterns of elemental mineralisation and become recorded in marsupial teeth is previously unknown. This study analyses the distribution of calcium (major element), zinc (actively incorporated trace element), and strontium (passively incorporated trace element) in the teeth of five species of diprotodontian marsupial using synchrotron X-ray fluorescence microscopy. We find that the diprotodontian lower incisor concatenates elemental variation from across the molariform dentition, preserving a prolonged record of life history in four of the five species. Patterns of elemental incorporation in enamel, dentine, and cementum are presented, with Ca, Zn, and Sr having differing distributions. Zn accretion indicates a role in mineralisation and/or prevention of tooth degradation. Zn also demarcates incremental cementum lines. Sr is shown to be passively incorporated into marsupial teeth, with increasing Sr concentration in milk recorded in dental tissues formed contemporaneously. Older individuals have oscillatory signals in Sr that appear linked to seasonality. These findings highlight some similarities between eutherian and marsupial trace element incorporation, particularly in the distribution of Zn. Sr signals in marsupial teeth record key aspects of life history.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchrotron X-ray Fluorescence Microscopy Reveals Trace Elemental Indicators of Life History in Marsupial Teeth.\",\"authors\":\"William M G Parker, Justin W Adams, David P Hocking, Erich M G Fitzgerald, Geoff Shaw, Marilyn B Renfree, Alistair R Evans\",\"doi\":\"10.1007/s12011-024-04502-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As teeth develop, their mineralised composition is a bio-recorder of diet, environment, and growth. High-resolution elemental mapping provides a tool to reveal records of life history within teeth. The relative concentrations of a range of trace elements change between in utero development, birth, and weaning in eutherian mammals. Marsupials, however, have a different mode of development: altricial birth and growth within the pouch facilitated by compositional transitions in milk. How these differences alter patterns of elemental mineralisation and become recorded in marsupial teeth is previously unknown. This study analyses the distribution of calcium (major element), zinc (actively incorporated trace element), and strontium (passively incorporated trace element) in the teeth of five species of diprotodontian marsupial using synchrotron X-ray fluorescence microscopy. We find that the diprotodontian lower incisor concatenates elemental variation from across the molariform dentition, preserving a prolonged record of life history in four of the five species. Patterns of elemental incorporation in enamel, dentine, and cementum are presented, with Ca, Zn, and Sr having differing distributions. Zn accretion indicates a role in mineralisation and/or prevention of tooth degradation. Zn also demarcates incremental cementum lines. Sr is shown to be passively incorporated into marsupial teeth, with increasing Sr concentration in milk recorded in dental tissues formed contemporaneously. Older individuals have oscillatory signals in Sr that appear linked to seasonality. These findings highlight some similarities between eutherian and marsupial trace element incorporation, particularly in the distribution of Zn. Sr signals in marsupial teeth record key aspects of life history.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04502-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04502-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synchrotron X-ray Fluorescence Microscopy Reveals Trace Elemental Indicators of Life History in Marsupial Teeth.
As teeth develop, their mineralised composition is a bio-recorder of diet, environment, and growth. High-resolution elemental mapping provides a tool to reveal records of life history within teeth. The relative concentrations of a range of trace elements change between in utero development, birth, and weaning in eutherian mammals. Marsupials, however, have a different mode of development: altricial birth and growth within the pouch facilitated by compositional transitions in milk. How these differences alter patterns of elemental mineralisation and become recorded in marsupial teeth is previously unknown. This study analyses the distribution of calcium (major element), zinc (actively incorporated trace element), and strontium (passively incorporated trace element) in the teeth of five species of diprotodontian marsupial using synchrotron X-ray fluorescence microscopy. We find that the diprotodontian lower incisor concatenates elemental variation from across the molariform dentition, preserving a prolonged record of life history in four of the five species. Patterns of elemental incorporation in enamel, dentine, and cementum are presented, with Ca, Zn, and Sr having differing distributions. Zn accretion indicates a role in mineralisation and/or prevention of tooth degradation. Zn also demarcates incremental cementum lines. Sr is shown to be passively incorporated into marsupial teeth, with increasing Sr concentration in milk recorded in dental tissues formed contemporaneously. Older individuals have oscillatory signals in Sr that appear linked to seasonality. These findings highlight some similarities between eutherian and marsupial trace element incorporation, particularly in the distribution of Zn. Sr signals in marsupial teeth record key aspects of life history.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.