随机安慰剂对照试验中益生菌在胃肠道中的生存能力:结合分子生物学和新培养技术。

IF 3 4区 医学 Q2 MICROBIOLOGY
A Sen, M Kimura, R Ejima, S Arai, E Mitsuyama, H Kaneko, R Mishima, N Muto, A Hiraku, K Kato, Y Kuwano, H Maruyama, M Nakamura, N Iwabuchi, M Nakano, T Odamaki, M Tanaka
{"title":"随机安慰剂对照试验中益生菌在胃肠道中的生存能力:结合分子生物学和新培养技术。","authors":"A Sen, M Kimura, R Ejima, S Arai, E Mitsuyama, H Kaneko, R Mishima, N Muto, A Hiraku, K Kato, Y Kuwano, H Maruyama, M Nakamura, N Iwabuchi, M Nakano, T Odamaki, M Tanaka","doi":"10.1163/18762891-bja00055","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the viability of ingested probiotics within the gastrointestinal tract is essential for evaluating their efficacy and deciphering their mechanisms of action. Detecting Bifidobacterium longum subspecies longum BB536 is particularly challenging owing to its indistinguishability from the naturally abundant B. longum species in the human gut. We aimed to address this challenge by developing a selective culture medium for B. longum BB536 and employing a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) method to verify the survival of the probiotic after consumption. To achieve this, we designed a novel lactose-mupirocin-trimethoprim (LMT) medium that facilitates the cultivation of B. longum BB536 under anaerobic conditions at 42 °C. We screened 52 healthy adults and enrolled 39 who met the eligibility criteria. The participants were randomised into two groups, with 34 completing the protocol: 17 received commercial yogurt containing B. longum BB536 (9.30 log10 cfu/day) and 17 received a placebo. Prior to the intervention, B. longum BB536 was undetectable in all participants. However, following supplementation, LMT culturing identified viable B. longum BB536, with average counts of 6.33 ± 0.69 log10 cfu/g on day 3 and 6.16 ± 0.74 log10 cfu/g on day 17. PMA-qPCR further validated these results, showing viable cell counts of 6.09 ± 0.68 log10 cells/g wet faeces on day 3 and 6.44 ± 0.64 log10 cells/g wet faeces on day 17. While each method detected B. longum BB536 in some participants where the other did not, no participant tested negative by both methods at any time point. This complementarity between LMT culturing and PMA-qPCR ensures a comprehensive detection strategy, confirming the presence and resilience of B. longum BB536 in the gastrointestinal tract and underscoring its potential as a beneficial probiotic strain (UMIN000052110). Japan Conference of Clinical Research: registration number: BYG2B-01; University Hospital Medical Information Network: study protocol registration UMIN000052110.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-10"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probiotic viability in the gastrointestinal tract in a randomised placebo controlled trial: combining molecular biology and novel cultivation techniques.\",\"authors\":\"A Sen, M Kimura, R Ejima, S Arai, E Mitsuyama, H Kaneko, R Mishima, N Muto, A Hiraku, K Kato, Y Kuwano, H Maruyama, M Nakamura, N Iwabuchi, M Nakano, T Odamaki, M Tanaka\",\"doi\":\"10.1163/18762891-bja00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the viability of ingested probiotics within the gastrointestinal tract is essential for evaluating their efficacy and deciphering their mechanisms of action. Detecting Bifidobacterium longum subspecies longum BB536 is particularly challenging owing to its indistinguishability from the naturally abundant B. longum species in the human gut. We aimed to address this challenge by developing a selective culture medium for B. longum BB536 and employing a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) method to verify the survival of the probiotic after consumption. To achieve this, we designed a novel lactose-mupirocin-trimethoprim (LMT) medium that facilitates the cultivation of B. longum BB536 under anaerobic conditions at 42 °C. We screened 52 healthy adults and enrolled 39 who met the eligibility criteria. The participants were randomised into two groups, with 34 completing the protocol: 17 received commercial yogurt containing B. longum BB536 (9.30 log10 cfu/day) and 17 received a placebo. Prior to the intervention, B. longum BB536 was undetectable in all participants. However, following supplementation, LMT culturing identified viable B. longum BB536, with average counts of 6.33 ± 0.69 log10 cfu/g on day 3 and 6.16 ± 0.74 log10 cfu/g on day 17. PMA-qPCR further validated these results, showing viable cell counts of 6.09 ± 0.68 log10 cells/g wet faeces on day 3 and 6.44 ± 0.64 log10 cells/g wet faeces on day 17. While each method detected B. longum BB536 in some participants where the other did not, no participant tested negative by both methods at any time point. This complementarity between LMT culturing and PMA-qPCR ensures a comprehensive detection strategy, confirming the presence and resilience of B. longum BB536 in the gastrointestinal tract and underscoring its potential as a beneficial probiotic strain (UMIN000052110). Japan Conference of Clinical Research: registration number: BYG2B-01; University Hospital Medical Information Network: study protocol registration UMIN000052110.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1163/18762891-bja00055\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00055","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解摄入的益生菌在胃肠道内的生存能力对于评估其功效和破译其作用机制至关重要。长双歧杆菌BB536亚种的检测尤其具有挑战性,因为它与人类肠道中自然丰富的长双歧杆菌难以区分。为了解决这一挑战,我们开发了长芽孢杆菌BB536的选择性培养基,并采用单叠氮丙啶-定量聚合酶链反应(PMA-qPCR)方法来验证益生菌在食用后的存活率。为了实现这一目标,我们设计了一种新的乳糖-莫匹罗辛-甲氧苄啶(LMT)培养基,在42°C的厌氧条件下促进长芽孢杆菌BB536的培养。我们筛选了52名健康成人,并招募了39名符合资格标准的人。参与者被随机分为两组,34人完成方案:17人接受含有长芽杆菌BB536 (9.30 log10 cfu/天)的商业酸奶,17人接受安慰剂。在干预前,所有参与者均未检测到长芽胞杆菌BB536。然而,在补充后,LMT培养中发现了活的长曲霉BB536,第3天的平均计数为6.33±0.69 log10 cfu/g,第17天的平均计数为6.16±0.74 log10 cfu/g。PMA-qPCR进一步验证了这些结果,显示第3天的活细胞计数为6.09±0.68 log10细胞/g湿粪便,第17天的活细胞计数为6.44±0.64 log10细胞/g湿粪便。虽然每种方法在一些参与者中检测到长曲杆菌BB536,而另一种方法没有,但没有参与者在任何时间点通过两种方法检测为阴性。LMT培养和PMA-qPCR之间的这种互补性确保了一种全面的检测策略,证实了长梭菌BB536在胃肠道中的存在和恢复能力,并强调了其作为有益益生菌菌株的潜力(UMIN000052110)。日本临床研究会议:注册号:BYG2B-01;大学医院医疗信息网:研究方案注册号为UMIN000052110。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probiotic viability in the gastrointestinal tract in a randomised placebo controlled trial: combining molecular biology and novel cultivation techniques.

Understanding the viability of ingested probiotics within the gastrointestinal tract is essential for evaluating their efficacy and deciphering their mechanisms of action. Detecting Bifidobacterium longum subspecies longum BB536 is particularly challenging owing to its indistinguishability from the naturally abundant B. longum species in the human gut. We aimed to address this challenge by developing a selective culture medium for B. longum BB536 and employing a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) method to verify the survival of the probiotic after consumption. To achieve this, we designed a novel lactose-mupirocin-trimethoprim (LMT) medium that facilitates the cultivation of B. longum BB536 under anaerobic conditions at 42 °C. We screened 52 healthy adults and enrolled 39 who met the eligibility criteria. The participants were randomised into two groups, with 34 completing the protocol: 17 received commercial yogurt containing B. longum BB536 (9.30 log10 cfu/day) and 17 received a placebo. Prior to the intervention, B. longum BB536 was undetectable in all participants. However, following supplementation, LMT culturing identified viable B. longum BB536, with average counts of 6.33 ± 0.69 log10 cfu/g on day 3 and 6.16 ± 0.74 log10 cfu/g on day 17. PMA-qPCR further validated these results, showing viable cell counts of 6.09 ± 0.68 log10 cells/g wet faeces on day 3 and 6.44 ± 0.64 log10 cells/g wet faeces on day 17. While each method detected B. longum BB536 in some participants where the other did not, no participant tested negative by both methods at any time point. This complementarity between LMT culturing and PMA-qPCR ensures a comprehensive detection strategy, confirming the presence and resilience of B. longum BB536 in the gastrointestinal tract and underscoring its potential as a beneficial probiotic strain (UMIN000052110). Japan Conference of Clinical Research: registration number: BYG2B-01; University Hospital Medical Information Network: study protocol registration UMIN000052110.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Beneficial microbes
Beneficial microbes MICROBIOLOGY-NUTRITION & DIETETICS
CiteScore
7.90
自引率
1.90%
发文量
53
审稿时长
>12 weeks
期刊介绍: Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators. The journal will have five major sections: * Food, nutrition and health * Animal nutrition * Processing and application * Regulatory & safety aspects * Medical & health applications In these sections, topics dealt with by Beneficial Microbes include: * Worldwide safety and regulatory issues * Human and animal nutrition and health effects * Latest discoveries in mechanistic studies and screening methods to unravel mode of action * Host physiology related to allergy, inflammation, obesity, etc. * Trends in application of (meta)genomics, proteomics and metabolomics * New developments in how processing optimizes pro- & prebiotics for application * Bacterial physiology related to health benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信