Yang Tian, Yun-Qi Hou, Qiong-Xiang Zhai, Xing-Wang Song, Bing-Mei Li, Jie Wang, Jing-Jing Ji, Yin-Ting Liao, Wen-Xiong Chen, Bin Li, Wei-Ping Liao
{"title":"RYR3变异可能与特发性(非病变性)部分癫痫/癫痫易感性相关,通过遗传依赖性来理解基因与疾病的关联。","authors":"Yang Tian, Yun-Qi Hou, Qiong-Xiang Zhai, Xing-Wang Song, Bing-Mei Li, Jie Wang, Jing-Jing Ji, Yin-Ting Liao, Wen-Xiong Chen, Bin Li, Wei-Ping Liao","doi":"10.1002/ajmg.b.33023","DOIUrl":null,"url":null,"abstract":"<p><p>The RYR3 gene encodes a brain-type ryanodine receptor that functions to release calcium from intracellular storage and plays an essential role in calcium signaling. The associations between RYR3 variants and brain disorders remain unknown. We performed whole-exome sequencing in patients with idiopathic (non-lesional) partial epilepsy of unknown etiology. One de novo missense and six biallelic missense RYR3 variants were identified in seven unrelated cases. These variants had no or extremely low allele frequencies in the general population and were predicted to alter hydrogen bonds/decrease protein stability. Patients presented with partial seizures or secondarily generalized tonic-clonic seizures. All patients were seizure-free with/without anti-seizure treatment. Four showed antecedent febrile seizures, a typical susceptibility disorder that is related to the precipitating factor of fever. The genetic dependence nature (GDN) of RYR3, which is defined as the distinct impact of the absence of a gene on normal life, is \"obligatory\" (causing disease phenotypes). Complete abolishing of RYR3 results in abnormal phenotypes instead of lethality, whereas partial/mild impairment (usually more common) is associated with mild disease or increased susceptibility to disease, consistent with our findings. RYR3 is therefore potentially a candidate disease gene or susceptibility gene for idiopathic partial epilepsy.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":" ","pages":"e33023"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RYR3 Variants Are Potentially Associated With Idiopathic (Non-Lesional) Partial Epilepsy/Susceptibility of Seizures, Toward Understanding the Gene-Disease Association by Genetic Dependent Nature.\",\"authors\":\"Yang Tian, Yun-Qi Hou, Qiong-Xiang Zhai, Xing-Wang Song, Bing-Mei Li, Jie Wang, Jing-Jing Ji, Yin-Ting Liao, Wen-Xiong Chen, Bin Li, Wei-Ping Liao\",\"doi\":\"10.1002/ajmg.b.33023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The RYR3 gene encodes a brain-type ryanodine receptor that functions to release calcium from intracellular storage and plays an essential role in calcium signaling. The associations between RYR3 variants and brain disorders remain unknown. We performed whole-exome sequencing in patients with idiopathic (non-lesional) partial epilepsy of unknown etiology. One de novo missense and six biallelic missense RYR3 variants were identified in seven unrelated cases. These variants had no or extremely low allele frequencies in the general population and were predicted to alter hydrogen bonds/decrease protein stability. Patients presented with partial seizures or secondarily generalized tonic-clonic seizures. All patients were seizure-free with/without anti-seizure treatment. Four showed antecedent febrile seizures, a typical susceptibility disorder that is related to the precipitating factor of fever. The genetic dependence nature (GDN) of RYR3, which is defined as the distinct impact of the absence of a gene on normal life, is \\\"obligatory\\\" (causing disease phenotypes). Complete abolishing of RYR3 results in abnormal phenotypes instead of lethality, whereas partial/mild impairment (usually more common) is associated with mild disease or increased susceptibility to disease, consistent with our findings. RYR3 is therefore potentially a candidate disease gene or susceptibility gene for idiopathic partial epilepsy.</p>\",\"PeriodicalId\":7673,\"journal\":{\"name\":\"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics\",\"volume\":\" \",\"pages\":\"e33023\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ajmg.b.33023\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ajmg.b.33023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
RYR3 Variants Are Potentially Associated With Idiopathic (Non-Lesional) Partial Epilepsy/Susceptibility of Seizures, Toward Understanding the Gene-Disease Association by Genetic Dependent Nature.
The RYR3 gene encodes a brain-type ryanodine receptor that functions to release calcium from intracellular storage and plays an essential role in calcium signaling. The associations between RYR3 variants and brain disorders remain unknown. We performed whole-exome sequencing in patients with idiopathic (non-lesional) partial epilepsy of unknown etiology. One de novo missense and six biallelic missense RYR3 variants were identified in seven unrelated cases. These variants had no or extremely low allele frequencies in the general population and were predicted to alter hydrogen bonds/decrease protein stability. Patients presented with partial seizures or secondarily generalized tonic-clonic seizures. All patients were seizure-free with/without anti-seizure treatment. Four showed antecedent febrile seizures, a typical susceptibility disorder that is related to the precipitating factor of fever. The genetic dependence nature (GDN) of RYR3, which is defined as the distinct impact of the absence of a gene on normal life, is "obligatory" (causing disease phenotypes). Complete abolishing of RYR3 results in abnormal phenotypes instead of lethality, whereas partial/mild impairment (usually more common) is associated with mild disease or increased susceptibility to disease, consistent with our findings. RYR3 is therefore potentially a candidate disease gene or susceptibility gene for idiopathic partial epilepsy.
期刊介绍:
Neuropsychiatric Genetics, Part B of the American Journal of Medical Genetics (AJMG) , provides a forum for experimental and clinical investigations of the genetic mechanisms underlying neurologic and psychiatric disorders. It is a resource for novel genetics studies of the heritable nature of psychiatric and other nervous system disorders, characterized at the molecular, cellular or behavior levels. Neuropsychiatric Genetics publishes eight times per year.