驱动膀胱组织再生的脱细胞平台。

IF 3.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Mitali Kini, Matthew I. Bury, Arun K. Sharma
{"title":"驱动膀胱组织再生的脱细胞平台。","authors":"Mitali Kini,&nbsp;Matthew I. Bury,&nbsp;Arun K. Sharma","doi":"10.1002/adtp.202400158","DOIUrl":null,"url":null,"abstract":"<p>Impaired bladder compliance secondary to congenital or acquired bladder dysfunction can lead to irreversible kidney damage. This is managed with surgical augmentation utilizing intestinal tissue, which can cause stone formation, infections, and malignant transformation. Co-seeded bone marrow mesenchymal stem cell (MSC)/CD34+ hematopoietic stem cell (HSPC) scaffolds (PRS) have been successful in regenerating bladder tissue. However, the acquisition of viable cells is challenging in the clinical setting. Here, the regenerative capacity of human MSC/CD34+ co-cultured total condition media (TCM) is compared to media alone in immune-competent rats augmented with PRS following partial cystectomy. Augmented bladders are instilled with media (control, <i>n</i> = 4) or TCM (<i>n</i> = 5) twice a week for 4 weeks. Regenerated tissue is analyzed for smooth muscle, urothelium, vascular, and peripheral nerve regrowth. Urodynamic (UDS) measures are performed pre- and 4 weeks post-augmentation. The results demonstrate that TCM-instilled grafts have greater muscle content, larger average urothelial widths, higher percent vascularization, and more robust neural infiltration post-augmentation. UDS demonstrates greater percent bladder recovery in the TCM group, indicating functional improvement in bladder storage capacity. This study is the first to propose the use of cell-free TCM as an alternative to traditional cell-seeded scaffolds to promote bladder tissue regeneration.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737526/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Acellular Platform to Drive Urinary Bladder Tissue Regeneration\",\"authors\":\"Mitali Kini,&nbsp;Matthew I. Bury,&nbsp;Arun K. Sharma\",\"doi\":\"10.1002/adtp.202400158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Impaired bladder compliance secondary to congenital or acquired bladder dysfunction can lead to irreversible kidney damage. This is managed with surgical augmentation utilizing intestinal tissue, which can cause stone formation, infections, and malignant transformation. Co-seeded bone marrow mesenchymal stem cell (MSC)/CD34+ hematopoietic stem cell (HSPC) scaffolds (PRS) have been successful in regenerating bladder tissue. However, the acquisition of viable cells is challenging in the clinical setting. Here, the regenerative capacity of human MSC/CD34+ co-cultured total condition media (TCM) is compared to media alone in immune-competent rats augmented with PRS following partial cystectomy. Augmented bladders are instilled with media (control, <i>n</i> = 4) or TCM (<i>n</i> = 5) twice a week for 4 weeks. Regenerated tissue is analyzed for smooth muscle, urothelium, vascular, and peripheral nerve regrowth. Urodynamic (UDS) measures are performed pre- and 4 weeks post-augmentation. The results demonstrate that TCM-instilled grafts have greater muscle content, larger average urothelial widths, higher percent vascularization, and more robust neural infiltration post-augmentation. UDS demonstrates greater percent bladder recovery in the TCM group, indicating functional improvement in bladder storage capacity. This study is the first to propose the use of cell-free TCM as an alternative to traditional cell-seeded scaffolds to promote bladder tissue regeneration.</p>\",\"PeriodicalId\":7284,\"journal\":{\"name\":\"Advanced Therapeutics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400158\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400158","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

继发于先天性或后天性膀胱功能障碍的膀胱顺应性受损可导致不可逆的肾脏损害。这是通过利用肠道组织的手术增强来处理的,这可能导致结石形成,感染和恶性转化。共种骨髓间充质干细胞(MSC)/CD34+造血干细胞(HSPC)支架(PRS)已成功用于膀胱组织再生。然而,在临床环境中获得活细胞是具有挑战性的。本研究比较了人MSC/CD34+共培养的总状态培养基(TCM)与单独培养的培养基在部分膀胱切除术后增强了PRS的免疫能力大鼠中的再生能力。增强膀胱输注培养基(对照组,n = 4)或中药(n = 5),每周2次,持续4周。对再生组织进行平滑肌、尿路上皮、血管和周围神经再生分析。在隆胸术前和术后4周进行尿动力学(UDS)测量。结果表明,中药灌注移植物具有更大的肌肉含量、更大的平均尿路上皮宽度、更高的血管成形率和更强健的神经浸润。UDS显示中药组膀胱恢复率更高,表明膀胱储存能力的功能改善。这项研究首次提出使用无细胞中药作为传统细胞种子支架的替代方法来促进膀胱组织再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Acellular Platform to Drive Urinary Bladder Tissue Regeneration

An Acellular Platform to Drive Urinary Bladder Tissue Regeneration

Impaired bladder compliance secondary to congenital or acquired bladder dysfunction can lead to irreversible kidney damage. This is managed with surgical augmentation utilizing intestinal tissue, which can cause stone formation, infections, and malignant transformation. Co-seeded bone marrow mesenchymal stem cell (MSC)/CD34+ hematopoietic stem cell (HSPC) scaffolds (PRS) have been successful in regenerating bladder tissue. However, the acquisition of viable cells is challenging in the clinical setting. Here, the regenerative capacity of human MSC/CD34+ co-cultured total condition media (TCM) is compared to media alone in immune-competent rats augmented with PRS following partial cystectomy. Augmented bladders are instilled with media (control, n = 4) or TCM (n = 5) twice a week for 4 weeks. Regenerated tissue is analyzed for smooth muscle, urothelium, vascular, and peripheral nerve regrowth. Urodynamic (UDS) measures are performed pre- and 4 weeks post-augmentation. The results demonstrate that TCM-instilled grafts have greater muscle content, larger average urothelial widths, higher percent vascularization, and more robust neural infiltration post-augmentation. UDS demonstrates greater percent bladder recovery in the TCM group, indicating functional improvement in bladder storage capacity. This study is the first to propose the use of cell-free TCM as an alternative to traditional cell-seeded scaffolds to promote bladder tissue regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Therapeutics
Advanced Therapeutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.10
自引率
2.20%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信