昼夜节律调节肝卵巢轴连接多囊卵巢综合征和非酒精性脂肪肝。

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yibing Lan, Bihui Jin, Yuhang Fan, Yizhou Huang, Jianhong Zhou
{"title":"昼夜节律调节肝卵巢轴连接多囊卵巢综合征和非酒精性脂肪肝。","authors":"Yibing Lan, Bihui Jin, Yuhang Fan, Yizhou Huang, Jianhong Zhou","doi":"10.1007/s10528-024-11010-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases. Single-sample and single-gene gene set enrichment analyses explored immune infiltration and pathways associated with CRRGs. Diagnostic biomarkers were identified using a random forest algorithm and validated through nomograms and a mouse model. Seven crosstalk CRRGs (FOS, ACHE, FOSB, EGR1, NR4A1, DUSP1, and EGR3) were associated with clinical features, immunoinflammatory microenvironment, and metabolic pathways in both diseases. EGR1, DUSP1, and NR4A1 were identified as diagnostic biomarkers, exhibiting robust diagnostic capacity (AUC = 0.7679 for PCOS, AUG = 0.9981 for NAFLD). Nomogram validation showed excellent calibration, and independent datasets confirmed their discriminatory ability (AUC = 0.6528 for PCOS, AUC = 0.8275 for NAFLD). Additionally, ceRNA networks and androgen receptor binding sites were identified, suggesting their regulatory roles. Mouse model validation confirmed significant downregulation of EGR1, DUSP1, and NR4A1 in liver tissues, consistent with sequencing data. This study identifies crosstalk CRRGs and diagnostic biomarkers shared between PCOS and NAFLD, highlighting their roles in immune and metabolic dysregulation. These biomarkers offer the potential for improving diagnosis and guiding targeted treatments for both diseases.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Circadian Rhythm Regulates the Hepato-ovarian Axis Linking Polycystic Ovary Syndrome and Non-alcoholic Fatty Liver Disease.\",\"authors\":\"Yibing Lan, Bihui Jin, Yuhang Fan, Yizhou Huang, Jianhong Zhou\",\"doi\":\"10.1007/s10528-024-11010-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases. Single-sample and single-gene gene set enrichment analyses explored immune infiltration and pathways associated with CRRGs. Diagnostic biomarkers were identified using a random forest algorithm and validated through nomograms and a mouse model. Seven crosstalk CRRGs (FOS, ACHE, FOSB, EGR1, NR4A1, DUSP1, and EGR3) were associated with clinical features, immunoinflammatory microenvironment, and metabolic pathways in both diseases. EGR1, DUSP1, and NR4A1 were identified as diagnostic biomarkers, exhibiting robust diagnostic capacity (AUC = 0.7679 for PCOS, AUG = 0.9981 for NAFLD). Nomogram validation showed excellent calibration, and independent datasets confirmed their discriminatory ability (AUC = 0.6528 for PCOS, AUC = 0.8275 for NAFLD). Additionally, ceRNA networks and androgen receptor binding sites were identified, suggesting their regulatory roles. Mouse model validation confirmed significant downregulation of EGR1, DUSP1, and NR4A1 in liver tissues, consistent with sequencing data. This study identifies crosstalk CRRGs and diagnostic biomarkers shared between PCOS and NAFLD, highlighting their roles in immune and metabolic dysregulation. These biomarkers offer the potential for improving diagnosis and guiding targeted treatments for both diseases.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-11010-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-11010-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在确定多囊卵巢综合征(PCOS)和非酒精性脂肪性肝病(NAFLD)中与昼夜节律紊乱相关的共同基因表达,以发现共同的诊断生物标志物。收集了12例PCOS和14例非PCOS患者的内脏脂肪RNA样本,样本量代表了临床情况,足以捕获PCOS基因表达谱。与NAFLD患者的肝脏转录组谱一起,分析了这些数据,以确定疾病之间的串扰昼夜节律相关基因(CRRGs)。单样本和单基因基因集富集分析探讨了与CRRGs相关的免疫浸润和途径。诊断性生物标志物使用随机森林算法进行识别,并通过图和小鼠模型进行验证。7个串扰CRRGs (FOS、ACHE、FOSB、EGR1、NR4A1、DUSP1和EGR3)与两种疾病的临床特征、免疫炎症微环境和代谢途径相关。EGR1、DUSP1和NR4A1被确定为诊断性生物标志物,表现出强大的诊断能力(PCOS的AUC = 0.7679, NAFLD的AUC = 0.9981)。Nomogram validation显示了良好的校准效果,独立数据集证实了他们的区分能力(PCOS的AUC = 0.6528, NAFLD的AUC = 0.8275)。此外,还鉴定了ceRNA网络和雄激素受体结合位点,表明它们具有调节作用。小鼠模型验证证实肝组织中EGR1、DUSP1和NR4A1显著下调,与测序数据一致。本研究确定了PCOS和NAFLD之间共享的串扰CRRGs和诊断生物标志物,强调了它们在免疫和代谢失调中的作用。这些生物标志物为改善这两种疾病的诊断和指导靶向治疗提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Circadian Rhythm Regulates the Hepato-ovarian Axis Linking Polycystic Ovary Syndrome and Non-alcoholic Fatty Liver Disease.

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases. Single-sample and single-gene gene set enrichment analyses explored immune infiltration and pathways associated with CRRGs. Diagnostic biomarkers were identified using a random forest algorithm and validated through nomograms and a mouse model. Seven crosstalk CRRGs (FOS, ACHE, FOSB, EGR1, NR4A1, DUSP1, and EGR3) were associated with clinical features, immunoinflammatory microenvironment, and metabolic pathways in both diseases. EGR1, DUSP1, and NR4A1 were identified as diagnostic biomarkers, exhibiting robust diagnostic capacity (AUC = 0.7679 for PCOS, AUG = 0.9981 for NAFLD). Nomogram validation showed excellent calibration, and independent datasets confirmed their discriminatory ability (AUC = 0.6528 for PCOS, AUC = 0.8275 for NAFLD). Additionally, ceRNA networks and androgen receptor binding sites were identified, suggesting their regulatory roles. Mouse model validation confirmed significant downregulation of EGR1, DUSP1, and NR4A1 in liver tissues, consistent with sequencing data. This study identifies crosstalk CRRGs and diagnostic biomarkers shared between PCOS and NAFLD, highlighting their roles in immune and metabolic dysregulation. These biomarkers offer the potential for improving diagnosis and guiding targeted treatments for both diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信