Yuxiang Du, Qianwen Zhang, Huaxiong Wu, Xiaohuan Liu, Genqiang Chen, Yuesong Liang, Qi Li, Yangxin Gu, Minghui Zhang, Hongxing Wang
{"title":"金刚石溶液栅场效应晶体管上10nm Al2O3薄膜对葡萄糖检测的改进。","authors":"Yuxiang Du, Qianwen Zhang, Huaxiong Wu, Xiaohuan Liu, Genqiang Chen, Yuesong Liang, Qi Li, Yangxin Gu, Minghui Zhang, Hongxing Wang","doi":"10.1016/j.talanta.2025.127560","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose detection is crucial for diagnosis, prevention and treatment of diabetes mellitus. In this work, 10 nm Al<sub>2</sub>O<sub>3</sub> thin film was introduced on the channel of diamond solution-gate field-effect transistor (SGFET) to improve the performance of glucose detection. AFM results show the roughness of channel surface increased after Al<sub>2</sub>O<sub>3</sub> thin film deposition. Then, 1-pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) and glucose oxidase (GOD) were linked on the channel. The morphology after each modification step was evaluated by SEM, and the result indicated an uneven Al<sub>2</sub>O<sub>3</sub> distribution. XPS spectra further confirmed the effective modification of Pyr-NHS and GOD. In addition, the shifts of transfer characteristics for each concentration of glucose were analyzed, which illustrated a wide linear response (10<sup>-8</sup>-10<sup>-2</sup> M), a high sensitivity (-44.01 mV/log<sub>10</sub>[glucose concentration]) and a low detection limitation (10<sup>-8</sup> M). All these results show an excellent detection performance, which may provide a new idea for the design of diamond SGFET biosensor.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127560"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of glucose detection using 10 nm Al<sub>2</sub>O<sub>3</sub> thin film on diamond solution-gate field-effect transistor.\",\"authors\":\"Yuxiang Du, Qianwen Zhang, Huaxiong Wu, Xiaohuan Liu, Genqiang Chen, Yuesong Liang, Qi Li, Yangxin Gu, Minghui Zhang, Hongxing Wang\",\"doi\":\"10.1016/j.talanta.2025.127560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucose detection is crucial for diagnosis, prevention and treatment of diabetes mellitus. In this work, 10 nm Al<sub>2</sub>O<sub>3</sub> thin film was introduced on the channel of diamond solution-gate field-effect transistor (SGFET) to improve the performance of glucose detection. AFM results show the roughness of channel surface increased after Al<sub>2</sub>O<sub>3</sub> thin film deposition. Then, 1-pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) and glucose oxidase (GOD) were linked on the channel. The morphology after each modification step was evaluated by SEM, and the result indicated an uneven Al<sub>2</sub>O<sub>3</sub> distribution. XPS spectra further confirmed the effective modification of Pyr-NHS and GOD. In addition, the shifts of transfer characteristics for each concentration of glucose were analyzed, which illustrated a wide linear response (10<sup>-8</sup>-10<sup>-2</sup> M), a high sensitivity (-44.01 mV/log<sub>10</sub>[glucose concentration]) and a low detection limitation (10<sup>-8</sup> M). All these results show an excellent detection performance, which may provide a new idea for the design of diamond SGFET biosensor.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"286 \",\"pages\":\"127560\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.127560\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127560","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
血糖检测对糖尿病的诊断、预防和治疗至关重要。本文在金刚石溶液栅场效应晶体管(SGFET)的沟道上引入10nm Al2O3薄膜,以提高葡萄糖检测的性能。AFM结果表明,Al2O3薄膜沉积后,沟道表面粗糙度增大。然后在通道上连接1-芘丁酸- n -羟基琥珀酰亚胺酯(Pyr-NHS)和葡萄糖氧化酶(GOD)。通过SEM对各改性步骤后的形貌进行了分析,结果表明Al2O3的分布不均匀。XPS光谱进一步证实了Pyr-NHS和GOD的有效修饰。此外,还分析了不同葡萄糖浓度下转移特性的变化,显示出宽线性响应(10-8-10-2 M)、高灵敏度(-44.01 mV/log10[葡萄糖浓度])和低检测限(10-8 M),这些结果显示出良好的检测性能,这可能为金刚石SGFET生物传感器的设计提供新的思路。
Improvement of glucose detection using 10 nm Al2O3 thin film on diamond solution-gate field-effect transistor.
Glucose detection is crucial for diagnosis, prevention and treatment of diabetes mellitus. In this work, 10 nm Al2O3 thin film was introduced on the channel of diamond solution-gate field-effect transistor (SGFET) to improve the performance of glucose detection. AFM results show the roughness of channel surface increased after Al2O3 thin film deposition. Then, 1-pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) and glucose oxidase (GOD) were linked on the channel. The morphology after each modification step was evaluated by SEM, and the result indicated an uneven Al2O3 distribution. XPS spectra further confirmed the effective modification of Pyr-NHS and GOD. In addition, the shifts of transfer characteristics for each concentration of glucose were analyzed, which illustrated a wide linear response (10-8-10-2 M), a high sensitivity (-44.01 mV/log10[glucose concentration]) and a low detection limitation (10-8 M). All these results show an excellent detection performance, which may provide a new idea for the design of diamond SGFET biosensor.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.