Yulia Pustovalova, Yunfeng Li, Jeffrey C Hoch, Bing Hao
{"title":"蜡样芽孢杆菌GerI生发受体A亚基n端结构域的骨架分配。","authors":"Yulia Pustovalova, Yunfeng Li, Jeffrey C Hoch, Bing Hao","doi":"10.1007/s12104-025-10216-7","DOIUrl":null,"url":null,"abstract":"<p><p>The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA<sup>NTD</sup>). Furthermore, we derive the secondary structure of GerIA<sup>NTD</sup> in solution and compare it with the crystal structure of the NTD of the A subunit of a Bacillus megaterium GR. These findings lay the foundation for further NMR studies aimed at investigating the structure-function relationship of the GerI subunits, with a broader goal of understanding the molecular mechanism underlying germinant recognition and signal transduction in GRs across Bacillus species.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backbone assignment of the N-terminal domain of the A subunit of the Bacillus cereus GerI germinant receptor.\",\"authors\":\"Yulia Pustovalova, Yunfeng Li, Jeffrey C Hoch, Bing Hao\",\"doi\":\"10.1007/s12104-025-10216-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA<sup>NTD</sup>). Furthermore, we derive the secondary structure of GerIA<sup>NTD</sup> in solution and compare it with the crystal structure of the NTD of the A subunit of a Bacillus megaterium GR. These findings lay the foundation for further NMR studies aimed at investigating the structure-function relationship of the GerI subunits, with a broader goal of understanding the molecular mechanism underlying germinant recognition and signal transduction in GRs across Bacillus species.</p>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12104-025-10216-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12104-025-10216-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Backbone assignment of the N-terminal domain of the A subunit of the Bacillus cereus GerI germinant receptor.
The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIANTD). Furthermore, we derive the secondary structure of GerIANTD in solution and compare it with the crystal structure of the NTD of the A subunit of a Bacillus megaterium GR. These findings lay the foundation for further NMR studies aimed at investigating the structure-function relationship of the GerI subunits, with a broader goal of understanding the molecular mechanism underlying germinant recognition and signal transduction in GRs across Bacillus species.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.