鼻腔和肺部表达-数量性状位点细胞型反褶积改进哮喘基因变异注释。

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zaid W El-Husseini, Tatiana Karp, Andy Lan, Tessa E Gillett, Cancan Qi, Dmitry Khalenkow, Thys van der Molen, Chris Brightling, Alberto Papi, Klaus F Rabe, Salman Siddiqui, Dave Singh, Monica Kraft, Bianca Beghé, Philippe Joubert, Yohan Bossé, Don Sin, Ana H Cordero, Wim Timens, Corry-Anke Brandsma, Ke Hao, David C Nickle, Judith M Vonk, Martijn C Nawijn, Maarten van den Berge, Reinoud Gosens, Alen Faiz, Gerard H Koppelman
{"title":"鼻腔和肺部表达-数量性状位点细胞型反褶积改进哮喘基因变异注释。","authors":"Zaid W El-Husseini, Tatiana Karp, Andy Lan, Tessa E Gillett, Cancan Qi, Dmitry Khalenkow, Thys van der Molen, Chris Brightling, Alberto Papi, Klaus F Rabe, Salman Siddiqui, Dave Singh, Monica Kraft, Bianca Beghé, Philippe Joubert, Yohan Bossé, Don Sin, Ana H Cordero, Wim Timens, Corry-Anke Brandsma, Ke Hao, David C Nickle, Judith M Vonk, Martijn C Nawijn, Maarten van den Berge, Reinoud Gosens, Alen Faiz, Gerard H Koppelman","doi":"10.1165/rcmb.2024-0251MA","DOIUrl":null,"url":null,"abstract":"<p><p>Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples. We hypothesize that incorporating cell-type proportions of airway and lung samples enhances eQTL analysis outcomes. Nasal brush (n=792) and lung tissue (n=1087) samples were investigated separately. Initially, a general eQTL analysis identified genetic variants associated with gene expression levels. Estimated cell-type proportions were adjusted based on the Human Lung Cell Atlas. Additionally, the presence of significant interaction effects between asthma-associated SNPs and each cell type proportion was explored and considered evidence for cell-type associated eQTL. In nasal brush and lung parenchyma samples, 44 and 116 asthma-associated SNPs were identified as eQTLs. Adjusting for cell-type proportions revealed eQTLs for an additional 17 genes (e.g., <i>FCER1G</i>, <i>CD200R1</i>, and <i>GABBR2</i>) and 16 Genes (e.g., <i>CYP2C8</i>, <i>SLC9A2</i>, and <i>SGCD</i>) in nose and lung, respectively. Moreover, we identified eQTLs for 9 SNPs annotated to genes such as <i>VASP</i>, <i>FOXA3</i>, <i>PCDHB12</i> displayed significant interactions with cell type proportions of Club, Goblet, and alveolar macrophages. Our findings demonstrate increased power for identifying eQTLs among asthma-associated SNPs by considering cell-type proportion of the bulk-RNA-seq data from nasal and lung tissues. Integration of cell-type deconvolution and eQTL analysis enhances our understanding of asthma genetics and cellular mechanisms, uncovering potential therapeutic targets for personalized interventions.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Annotation of Asthma Gene Variants with Cell Type Deconvolution of Nasal and Lung Expression-Quantitative Trait Loci.\",\"authors\":\"Zaid W El-Husseini, Tatiana Karp, Andy Lan, Tessa E Gillett, Cancan Qi, Dmitry Khalenkow, Thys van der Molen, Chris Brightling, Alberto Papi, Klaus F Rabe, Salman Siddiqui, Dave Singh, Monica Kraft, Bianca Beghé, Philippe Joubert, Yohan Bossé, Don Sin, Ana H Cordero, Wim Timens, Corry-Anke Brandsma, Ke Hao, David C Nickle, Judith M Vonk, Martijn C Nawijn, Maarten van den Berge, Reinoud Gosens, Alen Faiz, Gerard H Koppelman\",\"doi\":\"10.1165/rcmb.2024-0251MA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples. We hypothesize that incorporating cell-type proportions of airway and lung samples enhances eQTL analysis outcomes. Nasal brush (n=792) and lung tissue (n=1087) samples were investigated separately. Initially, a general eQTL analysis identified genetic variants associated with gene expression levels. Estimated cell-type proportions were adjusted based on the Human Lung Cell Atlas. Additionally, the presence of significant interaction effects between asthma-associated SNPs and each cell type proportion was explored and considered evidence for cell-type associated eQTL. In nasal brush and lung parenchyma samples, 44 and 116 asthma-associated SNPs were identified as eQTLs. Adjusting for cell-type proportions revealed eQTLs for an additional 17 genes (e.g., <i>FCER1G</i>, <i>CD200R1</i>, and <i>GABBR2</i>) and 16 Genes (e.g., <i>CYP2C8</i>, <i>SLC9A2</i>, and <i>SGCD</i>) in nose and lung, respectively. Moreover, we identified eQTLs for 9 SNPs annotated to genes such as <i>VASP</i>, <i>FOXA3</i>, <i>PCDHB12</i> displayed significant interactions with cell type proportions of Club, Goblet, and alveolar macrophages. Our findings demonstrate increased power for identifying eQTLs among asthma-associated SNPs by considering cell-type proportion of the bulk-RNA-seq data from nasal and lung tissues. Integration of cell-type deconvolution and eQTL analysis enhances our understanding of asthma genetics and cellular mechanisms, uncovering potential therapeutic targets for personalized interventions.</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2024-0251MA\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0251MA","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哮喘是一种遗传复杂的炎性气道疾病,与200多种单核苷酸多态性(snp)相关。然而,许多哮喘相关snp在肺和气道上皮样本中的功能影响尚不清楚。在这里,我们旨在通过对鼻腔和肺部样本的荟萃分析进行表达数量性状位点(eQTL)分析。我们假设纳入气道和肺样本的细胞类型比例可以提高eQTL分析结果。鼻刷(n=792)和肺组织(n=1087)样本分别进行调查。最初,一般的eQTL分析确定了与基因表达水平相关的遗传变异。估计的细胞类型比例根据人类肺细胞图谱进行调整。此外,哮喘相关snp与每种细胞类型比例之间存在显著的相互作用效应,并被认为是细胞类型相关eQTL的证据。在鼻刷和肺实质样本中,分别鉴定出44和116个哮喘相关snp为eqtl。调整细胞型比例后,分别在鼻子和肺中发现了另外17个基因(如FCER1G、CD200R1和GABBR2)和16个基因(如CYP2C8、SLC9A2和SGCD)的eqtl。此外,我们鉴定了9个snp的eqtl,这些snp注释到VASP、FOXA3、PCDHB12等基因,与俱乐部、杯状和肺泡巨噬细胞的细胞类型比例有显著的相互作用。我们的研究结果表明,通过考虑来自鼻腔和肺组织的大量rna -seq数据的细胞类型比例,在哮喘相关snp中识别eqtl的能力增强。整合细胞型反褶积和eQTL分析增强了我们对哮喘遗传学和细胞机制的理解,揭示了个性化干预的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Annotation of Asthma Gene Variants with Cell Type Deconvolution of Nasal and Lung Expression-Quantitative Trait Loci.

Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples. We hypothesize that incorporating cell-type proportions of airway and lung samples enhances eQTL analysis outcomes. Nasal brush (n=792) and lung tissue (n=1087) samples were investigated separately. Initially, a general eQTL analysis identified genetic variants associated with gene expression levels. Estimated cell-type proportions were adjusted based on the Human Lung Cell Atlas. Additionally, the presence of significant interaction effects between asthma-associated SNPs and each cell type proportion was explored and considered evidence for cell-type associated eQTL. In nasal brush and lung parenchyma samples, 44 and 116 asthma-associated SNPs were identified as eQTLs. Adjusting for cell-type proportions revealed eQTLs for an additional 17 genes (e.g., FCER1G, CD200R1, and GABBR2) and 16 Genes (e.g., CYP2C8, SLC9A2, and SGCD) in nose and lung, respectively. Moreover, we identified eQTLs for 9 SNPs annotated to genes such as VASP, FOXA3, PCDHB12 displayed significant interactions with cell type proportions of Club, Goblet, and alveolar macrophages. Our findings demonstrate increased power for identifying eQTLs among asthma-associated SNPs by considering cell-type proportion of the bulk-RNA-seq data from nasal and lung tissues. Integration of cell-type deconvolution and eQTL analysis enhances our understanding of asthma genetics and cellular mechanisms, uncovering potential therapeutic targets for personalized interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信