优化热稳定性:评价异功能疏水载体对固定化亚麻籽脂肪酶的影响。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nicole Novelli do Nascimento, Janaína Cejudo-Sanches, Paulo Waldir Tardioli, José Manuel Guisan, Angélica Marquetotti Salcedo Vieira
{"title":"优化热稳定性:评价异功能疏水载体对固定化亚麻籽脂肪酶的影响。","authors":"Nicole Novelli do Nascimento, Janaína Cejudo-Sanches, Paulo Waldir Tardioli, José Manuel Guisan, Angélica Marquetotti Salcedo Vieira","doi":"10.1007/s12010-024-05175-z","DOIUrl":null,"url":null,"abstract":"<p><p>Lipases have catalytic capacity in various processes such as hydrolysis. Those derived from plant sources, such as linseed, offer an economical alternative. The immobilization process facilitates the recovery and reuse of lipase, providing advantages such as resistance to high temperatures and difficulties in recovering and reusing free lipases, which makes product separation difficult. This study presents the immobilization of lipases extracted from flax seeds on octylfunctional hydrophobic supports. Additionally, the thermal stability of the derived products was evaluated in comparison with freely soluble lipase. The lipase exhibited a strong affinity for the evaluated heterofunctional hydrophobic supports, with DVS-activated octylagarose emerging as the most efficient method for immobilization, thus increasing catalytic activity upon resuspension. Furthermore, the octylagarose derivative demonstrated a notable increase in thermal stability. The main results of the study include that the soluble enzyme showed greater activity after 24 h, regardless of the temperature evaluated. The benzamide extract showed greater thermal stability, and all supports evaluated showed greater activity than the soluble enzyme after immobilization. Notably, lipase immobilized on octyl glyoxyl agarose showed the highest activity, demonstrated stability for 840 h at 60 °C, and had a half-life of 1242 h. Furthermore, the lipase immobilized in octyl glyoxyl agarose showed a stabilization factor approximately nine times greater than the free enzyme. These results suggest that immobilization, probably achieved through interfacial activation and multipoint covalent bonds, prevented the release of the enzyme into the medium with increasing temperature. This study thus highlights the significant potential of immobilizing flaxseed-derived lipase.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Thermal Stability: Evaluating the Impact of Heterofunctional Hydrophobic Supports on Immobilized Flaxseed Lipase.\",\"authors\":\"Nicole Novelli do Nascimento, Janaína Cejudo-Sanches, Paulo Waldir Tardioli, José Manuel Guisan, Angélica Marquetotti Salcedo Vieira\",\"doi\":\"10.1007/s12010-024-05175-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipases have catalytic capacity in various processes such as hydrolysis. Those derived from plant sources, such as linseed, offer an economical alternative. The immobilization process facilitates the recovery and reuse of lipase, providing advantages such as resistance to high temperatures and difficulties in recovering and reusing free lipases, which makes product separation difficult. This study presents the immobilization of lipases extracted from flax seeds on octylfunctional hydrophobic supports. Additionally, the thermal stability of the derived products was evaluated in comparison with freely soluble lipase. The lipase exhibited a strong affinity for the evaluated heterofunctional hydrophobic supports, with DVS-activated octylagarose emerging as the most efficient method for immobilization, thus increasing catalytic activity upon resuspension. Furthermore, the octylagarose derivative demonstrated a notable increase in thermal stability. The main results of the study include that the soluble enzyme showed greater activity after 24 h, regardless of the temperature evaluated. The benzamide extract showed greater thermal stability, and all supports evaluated showed greater activity than the soluble enzyme after immobilization. Notably, lipase immobilized on octyl glyoxyl agarose showed the highest activity, demonstrated stability for 840 h at 60 °C, and had a half-life of 1242 h. Furthermore, the lipase immobilized in octyl glyoxyl agarose showed a stabilization factor approximately nine times greater than the free enzyme. These results suggest that immobilization, probably achieved through interfacial activation and multipoint covalent bonds, prevented the release of the enzyme into the medium with increasing temperature. This study thus highlights the significant potential of immobilizing flaxseed-derived lipase.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05175-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05175-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脂肪酶在水解等过程中具有催化作用。从植物中提取的,如亚麻籽,提供了一种经济的替代品。固定化工艺有利于脂肪酶的回收和再利用,具有耐高温、游离脂肪酶回收和再利用困难等优点,使产物分离困难。研究了从亚麻籽中提取的脂肪酶在辛基功能疏水载体上的固定化。此外,对衍生产物的热稳定性进行了评价,并与自由可溶性脂肪酶进行了比较。脂肪酶对所评估的异功能疏水载体表现出很强的亲和力,dvs激活的辛糖糖成为最有效的固定方法,因此在重悬时增加了催化活性。此外,辛糖糖衍生物的热稳定性显著提高。该研究的主要结果包括,无论温度如何,可溶性酶在24 h后都表现出更高的活性。苯甲酰胺提取物表现出更大的热稳定性,并且所有载体在固定后都表现出比可溶性酶更高的活性。值得一提的是,固定化的脂肪酶活性最高,在60°C下稳定性为840 h,半衰期为1242 h。此外,固定化的脂肪酶的稳定系数约为游离酶的9倍。这些结果表明,固定化可能是通过界面激活和多点共价键实现的,可以阻止酶随着温度的升高而释放到培养基中。因此,这项研究强调了固定化亚麻籽衍生脂肪酶的重大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Thermal Stability: Evaluating the Impact of Heterofunctional Hydrophobic Supports on Immobilized Flaxseed Lipase.

Lipases have catalytic capacity in various processes such as hydrolysis. Those derived from plant sources, such as linseed, offer an economical alternative. The immobilization process facilitates the recovery and reuse of lipase, providing advantages such as resistance to high temperatures and difficulties in recovering and reusing free lipases, which makes product separation difficult. This study presents the immobilization of lipases extracted from flax seeds on octylfunctional hydrophobic supports. Additionally, the thermal stability of the derived products was evaluated in comparison with freely soluble lipase. The lipase exhibited a strong affinity for the evaluated heterofunctional hydrophobic supports, with DVS-activated octylagarose emerging as the most efficient method for immobilization, thus increasing catalytic activity upon resuspension. Furthermore, the octylagarose derivative demonstrated a notable increase in thermal stability. The main results of the study include that the soluble enzyme showed greater activity after 24 h, regardless of the temperature evaluated. The benzamide extract showed greater thermal stability, and all supports evaluated showed greater activity than the soluble enzyme after immobilization. Notably, lipase immobilized on octyl glyoxyl agarose showed the highest activity, demonstrated stability for 840 h at 60 °C, and had a half-life of 1242 h. Furthermore, the lipase immobilized in octyl glyoxyl agarose showed a stabilization factor approximately nine times greater than the free enzyme. These results suggest that immobilization, probably achieved through interfacial activation and multipoint covalent bonds, prevented the release of the enzyme into the medium with increasing temperature. This study thus highlights the significant potential of immobilizing flaxseed-derived lipase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信