Samaa Samir Kamar , Lobna A. Elkhateb , Asmaa Mohammed ShamsEldeen , Randa Mohamed Abdel-Moneim El-Mofty , Mohamed Mahmoud Elsebaie , Nermin Nabil Fayed , Hala Hassan Mohamed
{"title":"金纳米颗粒与诱导大鼠晶状体结构改变和氧化应激增强。","authors":"Samaa Samir Kamar , Lobna A. Elkhateb , Asmaa Mohammed ShamsEldeen , Randa Mohamed Abdel-Moneim El-Mofty , Mohamed Mahmoud Elsebaie , Nermin Nabil Fayed , Hala Hassan Mohamed","doi":"10.1016/j.fct.2025.115263","DOIUrl":null,"url":null,"abstract":"<div><div>There is an emerging wide use of nanotechnology in the medical fields. The information regarding distribution and clearance of gold nanoparticles (AuNPs) in the ocular tissue is insufficient. We investigated the cumulative effect of AuNPs on rat lens structure and their effect on the redox state and aquaporin-0 (AQP0) expression. Thirty-six male rats were distributed as follow: control, AuNPs-200 (200 μg/kg/rat for 4-weeks) and AuNPs-500 (500 μg/kg/rat for 4-weeks) groups. Rats were euthanized after 4-weeks, and the eye lenses were investigated for histological studies, transmission and scanning electron microscopic studies, immunohistochemistry for AQP0 and morphometric measures. Lens homogenates were investigated for tumour necrosis factor-alpha (TNF-α) and total reactive oxygen species levels by ELISA and for p-c-SRC by western-blot. AuNPs administration induced morphological and ultrastructural changes in rat lens. Degenerative changes in the lens epithelium, cytoplasmic vacuoles, distorted separated cortical lens fibers and loss of ball-and-socket junctions were observed. A significant reduction of AQP0-immune-staining with a significant elevation of TNF-α, total ROS and p-c-SRC content in rat lens homogenates were detected as compared to the control group. Repetitive spherical 20 nm-sized AuNPs administration, especially at 500 μg/kg/rat, induced structural changes in lens fibers of rats and increased oxidative stress level in the lens tissue.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"197 ","pages":"Article 115263"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gold nanoparticles and induction of structural alteration and enhanced oxidative stress in rat lens\",\"authors\":\"Samaa Samir Kamar , Lobna A. Elkhateb , Asmaa Mohammed ShamsEldeen , Randa Mohamed Abdel-Moneim El-Mofty , Mohamed Mahmoud Elsebaie , Nermin Nabil Fayed , Hala Hassan Mohamed\",\"doi\":\"10.1016/j.fct.2025.115263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There is an emerging wide use of nanotechnology in the medical fields. The information regarding distribution and clearance of gold nanoparticles (AuNPs) in the ocular tissue is insufficient. We investigated the cumulative effect of AuNPs on rat lens structure and their effect on the redox state and aquaporin-0 (AQP0) expression. Thirty-six male rats were distributed as follow: control, AuNPs-200 (200 μg/kg/rat for 4-weeks) and AuNPs-500 (500 μg/kg/rat for 4-weeks) groups. Rats were euthanized after 4-weeks, and the eye lenses were investigated for histological studies, transmission and scanning electron microscopic studies, immunohistochemistry for AQP0 and morphometric measures. Lens homogenates were investigated for tumour necrosis factor-alpha (TNF-α) and total reactive oxygen species levels by ELISA and for p-c-SRC by western-blot. AuNPs administration induced morphological and ultrastructural changes in rat lens. Degenerative changes in the lens epithelium, cytoplasmic vacuoles, distorted separated cortical lens fibers and loss of ball-and-socket junctions were observed. A significant reduction of AQP0-immune-staining with a significant elevation of TNF-α, total ROS and p-c-SRC content in rat lens homogenates were detected as compared to the control group. Repetitive spherical 20 nm-sized AuNPs administration, especially at 500 μg/kg/rat, induced structural changes in lens fibers of rats and increased oxidative stress level in the lens tissue.</div></div>\",\"PeriodicalId\":317,\"journal\":{\"name\":\"Food and Chemical Toxicology\",\"volume\":\"197 \",\"pages\":\"Article 115263\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Chemical Toxicology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278691525000304\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691525000304","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Gold nanoparticles and induction of structural alteration and enhanced oxidative stress in rat lens
There is an emerging wide use of nanotechnology in the medical fields. The information regarding distribution and clearance of gold nanoparticles (AuNPs) in the ocular tissue is insufficient. We investigated the cumulative effect of AuNPs on rat lens structure and their effect on the redox state and aquaporin-0 (AQP0) expression. Thirty-six male rats were distributed as follow: control, AuNPs-200 (200 μg/kg/rat for 4-weeks) and AuNPs-500 (500 μg/kg/rat for 4-weeks) groups. Rats were euthanized after 4-weeks, and the eye lenses were investigated for histological studies, transmission and scanning electron microscopic studies, immunohistochemistry for AQP0 and morphometric measures. Lens homogenates were investigated for tumour necrosis factor-alpha (TNF-α) and total reactive oxygen species levels by ELISA and for p-c-SRC by western-blot. AuNPs administration induced morphological and ultrastructural changes in rat lens. Degenerative changes in the lens epithelium, cytoplasmic vacuoles, distorted separated cortical lens fibers and loss of ball-and-socket junctions were observed. A significant reduction of AQP0-immune-staining with a significant elevation of TNF-α, total ROS and p-c-SRC content in rat lens homogenates were detected as compared to the control group. Repetitive spherical 20 nm-sized AuNPs administration, especially at 500 μg/kg/rat, induced structural changes in lens fibers of rats and increased oxidative stress level in the lens tissue.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.