Zhen Li, Shengxin Ji, Jie Cai, Biao Suo, Yunhao Zhu, Zhilu Ai
{"title":"燕麦β-葡聚糖对酵母抗冻性的影响及其机制。","authors":"Zhen Li, Shengxin Ji, Jie Cai, Biao Suo, Yunhao Zhu, Zhilu Ai","doi":"10.1016/j.ijbiomac.2025.140105","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to investigate the protective effects of oat β-glucan (OβG) on yeast subjected to freeze-thaw cycle-induced stress. A range of analytical techniques were employed to identify the underlying molecular mechanisms, including flow cytometry, gas chromatography-mass spectrometry, and quantitative real-time PCR. Following three freeze-thaw cycles, the survival rate of yeast that had been supplemented with 0.5 % OβG was found to be significantly higher than that of the control sample, increasing from 36.21 % to 56.81 %. The addition of 0.5 % OβG resulted in a remarkable reduction in apoptosis, an improvement in cell membrane integrity, and an increase in superoxide dismutase, catalase activity and glutathione content compared to the control group. Furthermore, a noticeable increment in the intracellular trehalose content was observed, from 4.10 mg/g to 7.48 mg/g. OβG modulated the expression of trehalose metabolism-related genes (ATH1, NTH1, NTH2) throughout the freeze-thaw cycle. Therefore, it could be concluded that OβG protected yeast cells against excessive reactive oxygen species and minimised oxidative damage to cellular membranes by upregulating antioxidant enzyme activity and total antioxidant capacity. Moreover, the supplementation of OβG was also found to be effective in increasing intracellular trehalose levels, thereby enhancing the freezing resistance of yeast cells.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140105"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of oat β-glucan on the freezing resistance of yeast and the underlying mechanism.\",\"authors\":\"Zhen Li, Shengxin Ji, Jie Cai, Biao Suo, Yunhao Zhu, Zhilu Ai\",\"doi\":\"10.1016/j.ijbiomac.2025.140105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to investigate the protective effects of oat β-glucan (OβG) on yeast subjected to freeze-thaw cycle-induced stress. A range of analytical techniques were employed to identify the underlying molecular mechanisms, including flow cytometry, gas chromatography-mass spectrometry, and quantitative real-time PCR. Following three freeze-thaw cycles, the survival rate of yeast that had been supplemented with 0.5 % OβG was found to be significantly higher than that of the control sample, increasing from 36.21 % to 56.81 %. The addition of 0.5 % OβG resulted in a remarkable reduction in apoptosis, an improvement in cell membrane integrity, and an increase in superoxide dismutase, catalase activity and glutathione content compared to the control group. Furthermore, a noticeable increment in the intracellular trehalose content was observed, from 4.10 mg/g to 7.48 mg/g. OβG modulated the expression of trehalose metabolism-related genes (ATH1, NTH1, NTH2) throughout the freeze-thaw cycle. Therefore, it could be concluded that OβG protected yeast cells against excessive reactive oxygen species and minimised oxidative damage to cellular membranes by upregulating antioxidant enzyme activity and total antioxidant capacity. Moreover, the supplementation of OβG was also found to be effective in increasing intracellular trehalose levels, thereby enhancing the freezing resistance of yeast cells.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"140105\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2025.140105\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140105","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of oat β-glucan on the freezing resistance of yeast and the underlying mechanism.
The objective of this study was to investigate the protective effects of oat β-glucan (OβG) on yeast subjected to freeze-thaw cycle-induced stress. A range of analytical techniques were employed to identify the underlying molecular mechanisms, including flow cytometry, gas chromatography-mass spectrometry, and quantitative real-time PCR. Following three freeze-thaw cycles, the survival rate of yeast that had been supplemented with 0.5 % OβG was found to be significantly higher than that of the control sample, increasing from 36.21 % to 56.81 %. The addition of 0.5 % OβG resulted in a remarkable reduction in apoptosis, an improvement in cell membrane integrity, and an increase in superoxide dismutase, catalase activity and glutathione content compared to the control group. Furthermore, a noticeable increment in the intracellular trehalose content was observed, from 4.10 mg/g to 7.48 mg/g. OβG modulated the expression of trehalose metabolism-related genes (ATH1, NTH1, NTH2) throughout the freeze-thaw cycle. Therefore, it could be concluded that OβG protected yeast cells against excessive reactive oxygen species and minimised oxidative damage to cellular membranes by upregulating antioxidant enzyme activity and total antioxidant capacity. Moreover, the supplementation of OβG was also found to be effective in increasing intracellular trehalose levels, thereby enhancing the freezing resistance of yeast cells.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.