Yasmeen Zamir Ahmed Nawaz Qureshi , Mengqi Li , Hui Chang , Yongxin Song
{"title":"微流控芯片系统在有色基抗菌药物敏感性测试中的应用综述。","authors":"Yasmeen Zamir Ahmed Nawaz Qureshi , Mengqi Li , Hui Chang , Yongxin Song","doi":"10.1016/j.bios.2025.117160","DOIUrl":null,"url":null,"abstract":"<div><div>Clinical bacteria pose a significant public health threat, underscoring the need for reliable and rapid diagnostic methods for early disease detection, which can facilitate patient recovery. Current diagnostic methods for rapid pathogen detection often take hours to days and require numerous reagents and lengthy protocols. Microfluidic chip system offers a promising solution for clinical microbiology detection by reducing detection time with minimal setup and providing a point-of-care solution for patients. These systems are also easier to handle and, with advancements in technology, offer more conclusive observations. This review focuses on recent developments in microfluidic chip-based systems that use colored fluorescent and non-fluorescent dyes for phenotypic tests in clinical pathogen detection. Recent advancements in non-conventional observation methods, such as smartphones and software combined with microscopy, are paving the way for microfluidic systems to revolutionize point-of-care devices. Significant challenges for these systems include antimicrobial susceptibility testing protocols, which depend on color formation, observation methods, and reducing detection time. In the future, working with live cultures remains a major hurdle in developing efficient and accurate microfluidic diagnostic systems for antimicrobial susceptibility testing.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"273 ","pages":"Article 117160"},"PeriodicalIF":10.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic chip systems for color-based antimicrobial susceptibility test a review\",\"authors\":\"Yasmeen Zamir Ahmed Nawaz Qureshi , Mengqi Li , Hui Chang , Yongxin Song\",\"doi\":\"10.1016/j.bios.2025.117160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clinical bacteria pose a significant public health threat, underscoring the need for reliable and rapid diagnostic methods for early disease detection, which can facilitate patient recovery. Current diagnostic methods for rapid pathogen detection often take hours to days and require numerous reagents and lengthy protocols. Microfluidic chip system offers a promising solution for clinical microbiology detection by reducing detection time with minimal setup and providing a point-of-care solution for patients. These systems are also easier to handle and, with advancements in technology, offer more conclusive observations. This review focuses on recent developments in microfluidic chip-based systems that use colored fluorescent and non-fluorescent dyes for phenotypic tests in clinical pathogen detection. Recent advancements in non-conventional observation methods, such as smartphones and software combined with microscopy, are paving the way for microfluidic systems to revolutionize point-of-care devices. Significant challenges for these systems include antimicrobial susceptibility testing protocols, which depend on color formation, observation methods, and reducing detection time. In the future, working with live cultures remains a major hurdle in developing efficient and accurate microfluidic diagnostic systems for antimicrobial susceptibility testing.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"273 \",\"pages\":\"Article 117160\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095656632500034X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095656632500034X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Microfluidic chip systems for color-based antimicrobial susceptibility test a review
Clinical bacteria pose a significant public health threat, underscoring the need for reliable and rapid diagnostic methods for early disease detection, which can facilitate patient recovery. Current diagnostic methods for rapid pathogen detection often take hours to days and require numerous reagents and lengthy protocols. Microfluidic chip system offers a promising solution for clinical microbiology detection by reducing detection time with minimal setup and providing a point-of-care solution for patients. These systems are also easier to handle and, with advancements in technology, offer more conclusive observations. This review focuses on recent developments in microfluidic chip-based systems that use colored fluorescent and non-fluorescent dyes for phenotypic tests in clinical pathogen detection. Recent advancements in non-conventional observation methods, such as smartphones and software combined with microscopy, are paving the way for microfluidic systems to revolutionize point-of-care devices. Significant challenges for these systems include antimicrobial susceptibility testing protocols, which depend on color formation, observation methods, and reducing detection time. In the future, working with live cultures remains a major hurdle in developing efficient and accurate microfluidic diagnostic systems for antimicrobial susceptibility testing.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.