Yao Yue , Min Liu , Mingyi Ma , Zhihao Xu , Haoda Zhang , Qingxiang Wang , Ruijiang Liu
{"title":"基于磁性自组装的CRISPR/Cas14a与DNA walker集成用于人乳头瘤病毒16型癌蛋白E7超灵敏检测","authors":"Yao Yue , Min Liu , Mingyi Ma , Zhihao Xu , Haoda Zhang , Qingxiang Wang , Ruijiang Liu","doi":"10.1016/j.bios.2025.117135","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the biomarker diagnostics sensitivity and selectivity of human papillomavirus type 16 oncoprotein E7 (HPV16 E7) in serum, a label/enzyme-free electrochemical detection platform was developed. This platform featured a type of \"Super-turn-off\" nanobiosensor monitored through differential pulse voltammetry (DPV). It integrated the magnetic self-assembly property of the α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@Au/Sub/BSA signal transport nano-medium with the high specificity of CRISPR/Cas14a and the amplification capability of the bipedal walker (DNA walker composed of two ssDNA strands), resulting in the enhanced specificity and anti-interference performance while remaining stable at 4 °C for over 30 days. The results demonstrated that the combination of walker and CRISPR yielded superior sensitivity and analytical capability compared with using either technology alone, achieving a detection limit of 67.17 fg mL<sup>−1</sup>, a quantification limit of 0.22 pg mL<sup>−1</sup>, and serum sample recovery rates of 98.46%–115.78%. Additionally, this platform was applied to detect serum and tissue samples from mouse models at various stages of cervical cancer, significantly improving the accuracy and effectiveness of early diagnosis and prognostic evaluation. This novel approach held promise as an efficient tool for point-of-care clinical detection of HPV16 E7, potentially reducing cervical cancer mortality.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"272 ","pages":"Article 117135"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas14a integrated with DNA walker based on magnetic self-assembly for human papillomavirus type 16 oncoprotein E7 ultrasensitive detection\",\"authors\":\"Yao Yue , Min Liu , Mingyi Ma , Zhihao Xu , Haoda Zhang , Qingxiang Wang , Ruijiang Liu\",\"doi\":\"10.1016/j.bios.2025.117135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To enhance the biomarker diagnostics sensitivity and selectivity of human papillomavirus type 16 oncoprotein E7 (HPV16 E7) in serum, a label/enzyme-free electrochemical detection platform was developed. This platform featured a type of \\\"Super-turn-off\\\" nanobiosensor monitored through differential pulse voltammetry (DPV). It integrated the magnetic self-assembly property of the α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@Au/Sub/BSA signal transport nano-medium with the high specificity of CRISPR/Cas14a and the amplification capability of the bipedal walker (DNA walker composed of two ssDNA strands), resulting in the enhanced specificity and anti-interference performance while remaining stable at 4 °C for over 30 days. The results demonstrated that the combination of walker and CRISPR yielded superior sensitivity and analytical capability compared with using either technology alone, achieving a detection limit of 67.17 fg mL<sup>−1</sup>, a quantification limit of 0.22 pg mL<sup>−1</sup>, and serum sample recovery rates of 98.46%–115.78%. Additionally, this platform was applied to detect serum and tissue samples from mouse models at various stages of cervical cancer, significantly improving the accuracy and effectiveness of early diagnosis and prognostic evaluation. This novel approach held promise as an efficient tool for point-of-care clinical detection of HPV16 E7, potentially reducing cervical cancer mortality.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"272 \",\"pages\":\"Article 117135\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325000090\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325000090","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
CRISPR/Cas14a integrated with DNA walker based on magnetic self-assembly for human papillomavirus type 16 oncoprotein E7 ultrasensitive detection
To enhance the biomarker diagnostics sensitivity and selectivity of human papillomavirus type 16 oncoprotein E7 (HPV16 E7) in serum, a label/enzyme-free electrochemical detection platform was developed. This platform featured a type of "Super-turn-off" nanobiosensor monitored through differential pulse voltammetry (DPV). It integrated the magnetic self-assembly property of the α-Fe2O3/Fe3O4@Au/Sub/BSA signal transport nano-medium with the high specificity of CRISPR/Cas14a and the amplification capability of the bipedal walker (DNA walker composed of two ssDNA strands), resulting in the enhanced specificity and anti-interference performance while remaining stable at 4 °C for over 30 days. The results demonstrated that the combination of walker and CRISPR yielded superior sensitivity and analytical capability compared with using either technology alone, achieving a detection limit of 67.17 fg mL−1, a quantification limit of 0.22 pg mL−1, and serum sample recovery rates of 98.46%–115.78%. Additionally, this platform was applied to detect serum and tissue samples from mouse models at various stages of cervical cancer, significantly improving the accuracy and effectiveness of early diagnosis and prognostic evaluation. This novel approach held promise as an efficient tool for point-of-care clinical detection of HPV16 E7, potentially reducing cervical cancer mortality.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.