采用锌-空气/光电化学电池原位生成H2O2用于污染物的现场控制。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Asutosh Behera, Aninda Jiban Bhattacharyya
{"title":"采用锌-空气/光电化学电池原位生成H2O2用于污染物的现场控制。","authors":"Asutosh Behera, Aninda Jiban Bhattacharyya","doi":"10.1002/smtd.202401539","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is energy-intensive and generates unwanted byproducts. Herein, an alternative production strategies of H<sub>2</sub>O<sub>2</sub> are demonstrated in a Zn-air and a photoelectrochemical cell. Employing an optimally produced reduced graphene oxide (rGO) electrocatalyst@air-cathode, an impressive power density of 320 Wm<sub>geo</sub> <sup>-2</sup> (geo = geometric area) is achieved along with a high H<sub>2</sub>O<sub>2</sub> production rate of 3.17 mol m<sub>geo</sub> <sup>-2</sup>h<sup>-1</sup> (operating potential = 0.8 V). Systematic investigations reveal the critical role of specific functional groups (viz. C─O─C, chemisorbed O<sub>2</sub>, C≐C) to be responsible for enhancing the yield of H<sub>2</sub>O<sub>2</sub>. The in situ generated superoxide (O<sub>2</sub>˙) and hydroxyl radicals (˙OH) act as oxidants to efficiently degrade onsite, a model textile dye pollutant (viz. rhodamine B) inside the Zn-air cell. Using the identical rGO as the photoelectrode in an H-type cell, the H<sub>2</sub>O<sub>2</sub> production is remarkably enhanced under visible light illumination. Simultaneously, the onsite pollutant degradation occurs five times faster than the Zn-air cell (at the same operating potential = 0.8 V). This work opens a new paradigm for electrosynthesis, wherein an underlying redox can be utilized to synthesize industrial chemicals for onsite control of environmental pollution sustainably.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401539"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing a Zn-air/Photo-Electrochemical Cell for In Situ Generation of H<sub>2</sub>O<sub>2</sub> for Onsite Control of Pollutants.\",\"authors\":\"Asutosh Behera, Aninda Jiban Bhattacharyya\",\"doi\":\"10.1002/smtd.202401539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Industrial production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is energy-intensive and generates unwanted byproducts. Herein, an alternative production strategies of H<sub>2</sub>O<sub>2</sub> are demonstrated in a Zn-air and a photoelectrochemical cell. Employing an optimally produced reduced graphene oxide (rGO) electrocatalyst@air-cathode, an impressive power density of 320 Wm<sub>geo</sub> <sup>-2</sup> (geo = geometric area) is achieved along with a high H<sub>2</sub>O<sub>2</sub> production rate of 3.17 mol m<sub>geo</sub> <sup>-2</sup>h<sup>-1</sup> (operating potential = 0.8 V). Systematic investigations reveal the critical role of specific functional groups (viz. C─O─C, chemisorbed O<sub>2</sub>, C≐C) to be responsible for enhancing the yield of H<sub>2</sub>O<sub>2</sub>. The in situ generated superoxide (O<sub>2</sub>˙) and hydroxyl radicals (˙OH) act as oxidants to efficiently degrade onsite, a model textile dye pollutant (viz. rhodamine B) inside the Zn-air cell. Using the identical rGO as the photoelectrode in an H-type cell, the H<sub>2</sub>O<sub>2</sub> production is remarkably enhanced under visible light illumination. Simultaneously, the onsite pollutant degradation occurs five times faster than the Zn-air cell (at the same operating potential = 0.8 V). This work opens a new paradigm for electrosynthesis, wherein an underlying redox can be utilized to synthesize industrial chemicals for onsite control of environmental pollution sustainably.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401539\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401539\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401539","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

过氧化氢(H2O2)的工业生产是能源密集型的,会产生不需要的副产品。本文在锌空气和光电化学电池中展示了H2O2的另一种生产策略。采用优化生产的还原氧化石墨烯(rGO) electrocatalyst@air-cathode,实现了320 Wmgeo -2 (geo =几何面积)的惊人功率密度,以及3.17 mol mgeo -2h-1的高H2O2产率(工作电位= 0.8 V)。系统研究揭示了特定官能团(即C─O─C,化学吸附O2, C‑C)对提高H2O2产率的关键作用。原位生成的超氧化物(O2˙)和羟基自由基(OH)作为氧化剂,在锌-空气电池内有效地降解一种模型纺织染料污染物(即罗丹明B)。在h型电池中使用相同的还原氧化石墨烯作为光电极,在可见光照射下H2O2的产量显著提高。同时,现场污染物降解速度比锌-空气电池快5倍(在相同的工作电位= 0.8 V时)。这项工作为电合成开辟了新的范例,其中潜在的氧化还原可以用来合成工业化学品,以可持续地现场控制环境污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Employing a Zn-air/Photo-Electrochemical Cell for In Situ Generation of H2O2 for Onsite Control of Pollutants.

Industrial production of hydrogen peroxide (H2O2) is energy-intensive and generates unwanted byproducts. Herein, an alternative production strategies of H2O2 are demonstrated in a Zn-air and a photoelectrochemical cell. Employing an optimally produced reduced graphene oxide (rGO) electrocatalyst@air-cathode, an impressive power density of 320 Wmgeo -2 (geo = geometric area) is achieved along with a high H2O2 production rate of 3.17 mol mgeo -2h-1 (operating potential = 0.8 V). Systematic investigations reveal the critical role of specific functional groups (viz. C─O─C, chemisorbed O2, C≐C) to be responsible for enhancing the yield of H2O2. The in situ generated superoxide (O2˙) and hydroxyl radicals (˙OH) act as oxidants to efficiently degrade onsite, a model textile dye pollutant (viz. rhodamine B) inside the Zn-air cell. Using the identical rGO as the photoelectrode in an H-type cell, the H2O2 production is remarkably enhanced under visible light illumination. Simultaneously, the onsite pollutant degradation occurs five times faster than the Zn-air cell (at the same operating potential = 0.8 V). This work opens a new paradigm for electrosynthesis, wherein an underlying redox can be utilized to synthesize industrial chemicals for onsite control of environmental pollution sustainably.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信