钠驱动通量介导合成钽酸铜用于光电化学CO2还原。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ariadne Köche, Kootak Hong, Sehun Seo, Finn Babbe, Hyeongyu Gim, Keon-Han Kim, Hojoong Choi, Yoonsung Jung, Inhyeok Oh, Gnanavel Vaidhyanathan Krishnamurthy, Michael Störmer, Sanghan Lee, Tae-Hoon Kim, Alexis T Bell, Sherdil Khan, Carolin M Sutter-Fella, Francesca M Toma
{"title":"钠驱动通量介导合成钽酸铜用于光电化学CO2还原。","authors":"Ariadne Köche, Kootak Hong, Sehun Seo, Finn Babbe, Hyeongyu Gim, Keon-Han Kim, Hojoong Choi, Yoonsung Jung, Inhyeok Oh, Gnanavel Vaidhyanathan Krishnamurthy, Michael Störmer, Sanghan Lee, Tae-Hoon Kim, Alexis T Bell, Sherdil Khan, Carolin M Sutter-Fella, Francesca M Toma","doi":"10.1002/smtd.202401432","DOIUrl":null,"url":null,"abstract":"<p><p>Copper-tantalate, Cu<sub>2</sub>Ta<sub>4</sub>O<sub>11</sub> (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C<sub>2+</sub>) production through photoelectrochemical (PEC) CO<sub>2</sub> reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase. To evaluate the PEC performance and catalytic properties of the films, copper(II) oxide (CuO) at the Na-CTO surface is selectively etched. The etched Na-CTO shows a lower dark current, with decreased contribution from photocorrosion, unlike the non-etched Na-CTO which has remaining CuO on the surface. Furthermore, Na-CTO exhibits 7.3-fold ethylene selectivity over hydrogen, thus highlighting its promising potential as a photocathode for C<sub>2+</sub> production through PEC CO<sub>2</sub> reduction.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401432"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper Tantalate by a Sodium-Driven Flux-Mediated Synthesis for Photoelectrochemical CO<sub>2</sub> Reduction.\",\"authors\":\"Ariadne Köche, Kootak Hong, Sehun Seo, Finn Babbe, Hyeongyu Gim, Keon-Han Kim, Hojoong Choi, Yoonsung Jung, Inhyeok Oh, Gnanavel Vaidhyanathan Krishnamurthy, Michael Störmer, Sanghan Lee, Tae-Hoon Kim, Alexis T Bell, Sherdil Khan, Carolin M Sutter-Fella, Francesca M Toma\",\"doi\":\"10.1002/smtd.202401432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copper-tantalate, Cu<sub>2</sub>Ta<sub>4</sub>O<sub>11</sub> (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C<sub>2+</sub>) production through photoelectrochemical (PEC) CO<sub>2</sub> reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase. To evaluate the PEC performance and catalytic properties of the films, copper(II) oxide (CuO) at the Na-CTO surface is selectively etched. The etched Na-CTO shows a lower dark current, with decreased contribution from photocorrosion, unlike the non-etched Na-CTO which has remaining CuO on the surface. Furthermore, Na-CTO exhibits 7.3-fold ethylene selectivity over hydrogen, thus highlighting its promising potential as a photocathode for C<sub>2+</sub> production through PEC CO<sub>2</sub> reduction.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401432\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401432\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401432","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钽酸铜Cu2Ta4O11 (CTO)由于其合适的能带和催化表面,在光电化学(PEC) CO2还原制备多碳化合物(C2+)过程中显示出巨大的潜力。然而,由于其亚稳态和热不稳定性,合成CTO面临着巨大的挑战。在本研究中,通过采用基于钠基通量的通量介导合成技术来制造钠掺杂CTO (Na-CTO)薄膜,解决了这一挑战,为CTO相提供了增强的成核和稳定性。为了评价膜的PEC性能和催化性能,在Na-CTO表面选择性蚀刻氧化铜(CuO)。与未蚀刻的Na-CTO表面残留CuO不同,蚀刻后的Na-CTO表面暗电流较低,光腐蚀对暗电流的贡献较小。此外,Na-CTO对乙烯的选择性是氢的7.3倍,从而突出了它作为通过PEC CO2还原产生C2+的光电阴极的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copper Tantalate by a Sodium-Driven Flux-Mediated Synthesis for Photoelectrochemical CO2 Reduction.

Copper-tantalate, Cu2Ta4O11 (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C2+) production through photoelectrochemical (PEC) CO2 reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase. To evaluate the PEC performance and catalytic properties of the films, copper(II) oxide (CuO) at the Na-CTO surface is selectively etched. The etched Na-CTO shows a lower dark current, with decreased contribution from photocorrosion, unlike the non-etched Na-CTO which has remaining CuO on the surface. Furthermore, Na-CTO exhibits 7.3-fold ethylene selectivity over hydrogen, thus highlighting its promising potential as a photocathode for C2+ production through PEC CO2 reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信