长时间的交联plga启发纳米颗粒从一锅纳米聚合精确测序短聚低聚乙酸二甲基丙烯酸酯。

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Luka Blagojevic, Nazila Kamaly
{"title":"长时间的交联plga启发纳米颗粒从一锅纳米聚合精确测序短聚低聚乙酸二甲基丙烯酸酯。","authors":"Luka Blagojevic, Nazila Kamaly","doi":"10.1002/marc.202400778","DOIUrl":null,"url":null,"abstract":"<p><p>A novel PLGA-inspired NP polymerization technique is presented, which allows the formation of NPs via the cross-linking of precisely sequenced short oligolactoglycolic acid dimethacrylates (OLGADMAs). Following the synthesis of a range of OLGADMAs, a library of NPs via this rapid and surfactant-free nanopolymerization method is successfully generated, which permits the simultaneous NP formation and encapsulation of drugs such as dexamethasone. The results indicate that NPs produced through this nanopolymerization technique with precisely controlled sequences exhibit heightened stability compared to conventionally sequenced and non-sequence controlled PLGA, as evidenced by minimal pH changes over five weeks. This improved stability is attributed to simultaneous crosslinking and co-polymerization of the OLGADMAs. Moreover, the long-acting NPs demonstrate minimal cytotoxicity and uniform cellular uptake in vitro. It is concluded that the ability to precisely regulate the sequence of short PLGA-inspired monomers and employ a unique in situ nanopolymerizing reaction results in exceptionally stable NPs for sustained drug delivery and opens exciting possibilities for the development of a range of long-lasting drug delivery systems with programmable structure and function.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400778"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Lasting Cross-Linked PLGA-Inspired Nanoparticles from One-Pot Nanopolymerization of Precisely Sequenced Short Oligolactoglycolic Acid Dimethacrylates.\",\"authors\":\"Luka Blagojevic, Nazila Kamaly\",\"doi\":\"10.1002/marc.202400778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel PLGA-inspired NP polymerization technique is presented, which allows the formation of NPs via the cross-linking of precisely sequenced short oligolactoglycolic acid dimethacrylates (OLGADMAs). Following the synthesis of a range of OLGADMAs, a library of NPs via this rapid and surfactant-free nanopolymerization method is successfully generated, which permits the simultaneous NP formation and encapsulation of drugs such as dexamethasone. The results indicate that NPs produced through this nanopolymerization technique with precisely controlled sequences exhibit heightened stability compared to conventionally sequenced and non-sequence controlled PLGA, as evidenced by minimal pH changes over five weeks. This improved stability is attributed to simultaneous crosslinking and co-polymerization of the OLGADMAs. Moreover, the long-acting NPs demonstrate minimal cytotoxicity and uniform cellular uptake in vitro. It is concluded that the ability to precisely regulate the sequence of short PLGA-inspired monomers and employ a unique in situ nanopolymerizing reaction results in exceptionally stable NPs for sustained drug delivery and opens exciting possibilities for the development of a range of long-lasting drug delivery systems with programmable structure and function.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400778\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400778\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400778","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新颖的受plga启发的NP聚合技术,该技术允许通过精确测序的短聚低聚乳酸二甲基丙烯酸酯(OLGADMAs)的交联形成NP。随着一系列olgadma的合成,通过这种快速且无表面活性剂的纳米聚合方法成功生成了NP库,从而允许同时形成NP并包封地塞米松等药物。结果表明,与传统测序和非序列控制的PLGA相比,通过这种精确控制序列的纳米聚合技术产生的NPs具有更高的稳定性,这一点在5周内的最小pH变化中得到了证明。这种稳定性的提高是由于olgadma的同时交联和共聚合。此外,长效NPs在体外表现出最小的细胞毒性和均匀的细胞摄取。结论是,精确调节短plga激发单体序列的能力,以及采用独特的原位纳米聚合反应,可以产生非常稳定的NPs,用于持续的药物递送,并为开发一系列具有可编程结构和功能的长效药物递送系统开辟了令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-Lasting Cross-Linked PLGA-Inspired Nanoparticles from One-Pot Nanopolymerization of Precisely Sequenced Short Oligolactoglycolic Acid Dimethacrylates.

A novel PLGA-inspired NP polymerization technique is presented, which allows the formation of NPs via the cross-linking of precisely sequenced short oligolactoglycolic acid dimethacrylates (OLGADMAs). Following the synthesis of a range of OLGADMAs, a library of NPs via this rapid and surfactant-free nanopolymerization method is successfully generated, which permits the simultaneous NP formation and encapsulation of drugs such as dexamethasone. The results indicate that NPs produced through this nanopolymerization technique with precisely controlled sequences exhibit heightened stability compared to conventionally sequenced and non-sequence controlled PLGA, as evidenced by minimal pH changes over five weeks. This improved stability is attributed to simultaneous crosslinking and co-polymerization of the OLGADMAs. Moreover, the long-acting NPs demonstrate minimal cytotoxicity and uniform cellular uptake in vitro. It is concluded that the ability to precisely regulate the sequence of short PLGA-inspired monomers and employ a unique in situ nanopolymerizing reaction results in exceptionally stable NPs for sustained drug delivery and opens exciting possibilities for the development of a range of long-lasting drug delivery systems with programmable structure and function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信