{"title":"长时间的交联plga启发纳米颗粒从一锅纳米聚合精确测序短聚低聚乙酸二甲基丙烯酸酯。","authors":"Luka Blagojevic, Nazila Kamaly","doi":"10.1002/marc.202400778","DOIUrl":null,"url":null,"abstract":"<p><p>A novel PLGA-inspired NP polymerization technique is presented, which allows the formation of NPs via the cross-linking of precisely sequenced short oligolactoglycolic acid dimethacrylates (OLGADMAs). Following the synthesis of a range of OLGADMAs, a library of NPs via this rapid and surfactant-free nanopolymerization method is successfully generated, which permits the simultaneous NP formation and encapsulation of drugs such as dexamethasone. The results indicate that NPs produced through this nanopolymerization technique with precisely controlled sequences exhibit heightened stability compared to conventionally sequenced and non-sequence controlled PLGA, as evidenced by minimal pH changes over five weeks. This improved stability is attributed to simultaneous crosslinking and co-polymerization of the OLGADMAs. Moreover, the long-acting NPs demonstrate minimal cytotoxicity and uniform cellular uptake in vitro. It is concluded that the ability to precisely regulate the sequence of short PLGA-inspired monomers and employ a unique in situ nanopolymerizing reaction results in exceptionally stable NPs for sustained drug delivery and opens exciting possibilities for the development of a range of long-lasting drug delivery systems with programmable structure and function.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400778"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Lasting Cross-Linked PLGA-Inspired Nanoparticles from One-Pot Nanopolymerization of Precisely Sequenced Short Oligolactoglycolic Acid Dimethacrylates.\",\"authors\":\"Luka Blagojevic, Nazila Kamaly\",\"doi\":\"10.1002/marc.202400778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel PLGA-inspired NP polymerization technique is presented, which allows the formation of NPs via the cross-linking of precisely sequenced short oligolactoglycolic acid dimethacrylates (OLGADMAs). Following the synthesis of a range of OLGADMAs, a library of NPs via this rapid and surfactant-free nanopolymerization method is successfully generated, which permits the simultaneous NP formation and encapsulation of drugs such as dexamethasone. The results indicate that NPs produced through this nanopolymerization technique with precisely controlled sequences exhibit heightened stability compared to conventionally sequenced and non-sequence controlled PLGA, as evidenced by minimal pH changes over five weeks. This improved stability is attributed to simultaneous crosslinking and co-polymerization of the OLGADMAs. Moreover, the long-acting NPs demonstrate minimal cytotoxicity and uniform cellular uptake in vitro. It is concluded that the ability to precisely regulate the sequence of short PLGA-inspired monomers and employ a unique in situ nanopolymerizing reaction results in exceptionally stable NPs for sustained drug delivery and opens exciting possibilities for the development of a range of long-lasting drug delivery systems with programmable structure and function.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400778\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400778\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400778","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Long-Lasting Cross-Linked PLGA-Inspired Nanoparticles from One-Pot Nanopolymerization of Precisely Sequenced Short Oligolactoglycolic Acid Dimethacrylates.
A novel PLGA-inspired NP polymerization technique is presented, which allows the formation of NPs via the cross-linking of precisely sequenced short oligolactoglycolic acid dimethacrylates (OLGADMAs). Following the synthesis of a range of OLGADMAs, a library of NPs via this rapid and surfactant-free nanopolymerization method is successfully generated, which permits the simultaneous NP formation and encapsulation of drugs such as dexamethasone. The results indicate that NPs produced through this nanopolymerization technique with precisely controlled sequences exhibit heightened stability compared to conventionally sequenced and non-sequence controlled PLGA, as evidenced by minimal pH changes over five weeks. This improved stability is attributed to simultaneous crosslinking and co-polymerization of the OLGADMAs. Moreover, the long-acting NPs demonstrate minimal cytotoxicity and uniform cellular uptake in vitro. It is concluded that the ability to precisely regulate the sequence of short PLGA-inspired monomers and employ a unique in situ nanopolymerizing reaction results in exceptionally stable NPs for sustained drug delivery and opens exciting possibilities for the development of a range of long-lasting drug delivery systems with programmable structure and function.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.