环境缺氧对人体褪黑激素昼夜节律的重置。

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Titiaan E Post, Riccardo De Gioannis, Jan Schmitz, Martin Wittkowski, Tina Martin Schäper, Anna Wrobeln, Joachim Fandrey, Marie-Therese Schmitz, Joseph S Takahashi, Jens Jordan, Eva-Maria Elmenhorst, Daniel Aeschbach
{"title":"环境缺氧对人体褪黑激素昼夜节律的重置。","authors":"Titiaan E Post, Riccardo De Gioannis, Jan Schmitz, Martin Wittkowski, Tina Martin Schäper, Anna Wrobeln, Joachim Fandrey, Marie-Therese Schmitz, Joseph S Takahashi, Jens Jordan, Eva-Maria Elmenhorst, Daniel Aeschbach","doi":"10.1111/jpi.70029","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks. Here we show in healthy humans, following a randomized controlled single-blind counterbalanced crossover study design, that one-time exposure to moderate ambient hypoxia (FiO<sub>2</sub> ~15%, normobaric) for ~6.5 h during the early night advances the dim-light onset of melatonin secretion by 9 min (95% CI: 1-16 min). Exposure to moderate hypoxia may thus be strong enough to entrain circadian clocks to a 24-h cycle in the absence of other entraining cues. Together, the results provide direct evidence for an interaction between the body's hypoxia-sensing pathway and circadian clocks. The finding offers a mechanism through which behaviors that change tissue oxygenation (e.g., exercise and fasting/eating) can affect circadian timing and through which hypoxia-related diseases (e.g., obstructive sleep apnea and chronic obstructive pulmonary disease) can result in circadian misalignment and associated pathologies. Trial Registration: Registration number: DRKS00023387; German Clinical Trials Register: http://www.drks.de.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 1","pages":"e70029"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740168/pdf/","citationCount":"0","resultStr":"{\"title\":\"Resetting of the Human Circadian Melatonin Rhythm by Ambient Hypoxia.\",\"authors\":\"Titiaan E Post, Riccardo De Gioannis, Jan Schmitz, Martin Wittkowski, Tina Martin Schäper, Anna Wrobeln, Joachim Fandrey, Marie-Therese Schmitz, Joseph S Takahashi, Jens Jordan, Eva-Maria Elmenhorst, Daniel Aeschbach\",\"doi\":\"10.1111/jpi.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks. Here we show in healthy humans, following a randomized controlled single-blind counterbalanced crossover study design, that one-time exposure to moderate ambient hypoxia (FiO<sub>2</sub> ~15%, normobaric) for ~6.5 h during the early night advances the dim-light onset of melatonin secretion by 9 min (95% CI: 1-16 min). Exposure to moderate hypoxia may thus be strong enough to entrain circadian clocks to a 24-h cycle in the absence of other entraining cues. Together, the results provide direct evidence for an interaction between the body's hypoxia-sensing pathway and circadian clocks. The finding offers a mechanism through which behaviors that change tissue oxygenation (e.g., exercise and fasting/eating) can affect circadian timing and through which hypoxia-related diseases (e.g., obstructive sleep apnea and chronic obstructive pulmonary disease) can result in circadian misalignment and associated pathologies. Trial Registration: Registration number: DRKS00023387; German Clinical Trials Register: http://www.drks.de.</p>\",\"PeriodicalId\":198,\"journal\":{\"name\":\"Journal of Pineal Research\",\"volume\":\"77 1\",\"pages\":\"e70029\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pineal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jpi.70029\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jpi.70029","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

体内的生物钟驱动着生理和行为的每日循环。大脑中的主时钟与环境昼夜周期保持同步,并使用内部信号使其他组织的时钟保持一致。细胞培养的工作揭示了组织氧合的周期性变化可能有助于重置和同步生物钟。在这里,我们通过随机对照单盲平衡交叉研究设计,在健康人群中显示,在夜间早期,一次性暴露于中度环境缺氧(FiO2 ~15%,常压)约6.5小时,使褪黑激素的暗光分泌提前9分钟(95% CI: 1-16分钟)。因此,暴露于中度缺氧可能足以在没有其他诱导信号的情况下使生物钟进入24小时周期。总之,这些结果为人体缺氧感知途径和生物钟之间的相互作用提供了直接证据。这一发现提供了一种机制,通过这种机制,改变组织氧合的行为(例如,运动和禁食/进食)可以影响昼夜节律时间,通过这种机制,与缺氧相关的疾病(例如,阻塞性睡眠呼吸暂停和慢性阻塞性肺病)可以导致昼夜节律失调和相关病理。试验注册:注册号:DRKS00023387;德国临床试验注册:http://www.drks.de。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resetting of the Human Circadian Melatonin Rhythm by Ambient Hypoxia.

Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks. Here we show in healthy humans, following a randomized controlled single-blind counterbalanced crossover study design, that one-time exposure to moderate ambient hypoxia (FiO2 ~15%, normobaric) for ~6.5 h during the early night advances the dim-light onset of melatonin secretion by 9 min (95% CI: 1-16 min). Exposure to moderate hypoxia may thus be strong enough to entrain circadian clocks to a 24-h cycle in the absence of other entraining cues. Together, the results provide direct evidence for an interaction between the body's hypoxia-sensing pathway and circadian clocks. The finding offers a mechanism through which behaviors that change tissue oxygenation (e.g., exercise and fasting/eating) can affect circadian timing and through which hypoxia-related diseases (e.g., obstructive sleep apnea and chronic obstructive pulmonary disease) can result in circadian misalignment and associated pathologies. Trial Registration: Registration number: DRKS00023387; German Clinical Trials Register: http://www.drks.de.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信