用MoS2修饰ITO/NiOx界面实现高效稳定的倒钙钛矿太阳能电池的空穴传输。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-20 DOI:10.1002/cssc.202402400
Hongye Dong, Jiayi Fan, Haohui Fang, Hongrui Lin, Xiaowen Gao, Kewei Wang, Yi Wang, Cheng Mu, Dongsheng Xu
{"title":"用MoS2修饰ITO/NiOx界面实现高效稳定的倒钙钛矿太阳能电池的空穴传输。","authors":"Hongye Dong, Jiayi Fan, Haohui Fang, Hongrui Lin, Xiaowen Gao, Kewei Wang, Yi Wang, Cheng Mu, Dongsheng Xu","doi":"10.1002/cssc.202402400","DOIUrl":null,"url":null,"abstract":"<p><p>Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO<sub>x</sub>) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO<sub>x</sub> and inefficient hole transport. In this study, we introduced MoS<sub>2</sub> nanoparticles at the indium tin oxide (ITO) /NiO<sub>x</sub> interface to enhance the ITO surface and optimize the deposition of NiO<sub>x</sub>, resulting in increased conductivity linked to a ratio of Ni<sup>3+</sup>:Ni<sup>2+</sup>. This interface modification not only optimized energy level but also promoted hole transport and reduced defects. Consequently, IPSCs with MoS<sub>2</sub> modified at ITO/NiO<sub>x</sub> interface achieved a champion power conversion efficiency (PCE) of 21.42 %, compared to 20.25 % without modification. Additionally, unencapsulated IPSCs with this interface modification displayed improved stability under thermal, light, humidity and ambient conditions. This innovative strategy for ITO/NiO<sub>x</sub> interface modification efficiently promotes hole transportation and can be integrated with other interface engineering approaches, offering valuable insights for the development of highly efficient and stable IPSCs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402400"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification at ITO/NiO<sub>x</sub> Interface with MoS<sub>2</sub> Enables Hole Transport for Efficient and Stable Inverted Perovskite Solar Cells.\",\"authors\":\"Hongye Dong, Jiayi Fan, Haohui Fang, Hongrui Lin, Xiaowen Gao, Kewei Wang, Yi Wang, Cheng Mu, Dongsheng Xu\",\"doi\":\"10.1002/cssc.202402400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO<sub>x</sub>) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO<sub>x</sub> and inefficient hole transport. In this study, we introduced MoS<sub>2</sub> nanoparticles at the indium tin oxide (ITO) /NiO<sub>x</sub> interface to enhance the ITO surface and optimize the deposition of NiO<sub>x</sub>, resulting in increased conductivity linked to a ratio of Ni<sup>3+</sup>:Ni<sup>2+</sup>. This interface modification not only optimized energy level but also promoted hole transport and reduced defects. Consequently, IPSCs with MoS<sub>2</sub> modified at ITO/NiO<sub>x</sub> interface achieved a champion power conversion efficiency (PCE) of 21.42 %, compared to 20.25 % without modification. Additionally, unencapsulated IPSCs with this interface modification displayed improved stability under thermal, light, humidity and ambient conditions. This innovative strategy for ITO/NiO<sub>x</sub> interface modification efficiently promotes hole transportation and can be integrated with other interface engineering approaches, offering valuable insights for the development of highly efficient and stable IPSCs.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402400\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402400\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402400","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用氧化镍(NiOx)作为空穴传输材料的倒钙钛矿太阳能电池(IPSCs)在材料和界面工程方面取得了很大进展。然而,由于NiOx的低固有电导率和低效的空穴输运,挑战仍然存在。在这项研究中,我们在氧化铟锡(ITO) /NiOx界面上引入了MoS2纳米颗粒,以增强ITO表面并优化NiOx的沉积,从而提高了与Ni3+:Ni2+比例相关的电导率。这种界面修饰不仅优化了能级,而且促进了空穴输运,减少了缺陷。因此,在ITO/NiOx界面修饰MoS2的IPSCs的功率转换效率(PCE)为21.42%,而未修饰的IPSCs的PCE为20.25%。此外,经过这种界面修饰的未封装IPSCs在热、光、湿度和环境条件下都表现出更好的稳定性。这种ITO/NiOx界面修改的创新策略有效地促进了空穴迁移,并且可以与其他界面工程方法集成,为开发高效稳定的IPSCs提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modification at ITO/NiOx Interface with MoS2 Enables Hole Transport for Efficient and Stable Inverted Perovskite Solar Cells.

Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiOx) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiOx and inefficient hole transport. In this study, we introduced MoS2 nanoparticles at the indium tin oxide (ITO) /NiOx interface to enhance the ITO surface and optimize the deposition of NiOx, resulting in increased conductivity linked to a ratio of Ni3+:Ni2+. This interface modification not only optimized energy level but also promoted hole transport and reduced defects. Consequently, IPSCs with MoS2 modified at ITO/NiOx interface achieved a champion power conversion efficiency (PCE) of 21.42 %, compared to 20.25 % without modification. Additionally, unencapsulated IPSCs with this interface modification displayed improved stability under thermal, light, humidity and ambient conditions. This innovative strategy for ITO/NiOx interface modification efficiently promotes hole transportation and can be integrated with other interface engineering approaches, offering valuable insights for the development of highly efficient and stable IPSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信