电合成硅烷修饰磁性纳米颗粒高效去除铅离子。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-17 DOI:10.1002/cssc.202402098
Ayman Esmat Ahmed Elkholy, Kingsley Poon, Gurvinder Singh, Marcus Giansiracusa, Kimberley L Callaghan, Colette Boskovic, Amanda V Ellis, Peter Kingshott
{"title":"电合成硅烷修饰磁性纳米颗粒高效去除铅离子。","authors":"Ayman Esmat Ahmed Elkholy, Kingsley Poon, Gurvinder Singh, Marcus Giansiracusa, Kimberley L Callaghan, Colette Boskovic, Amanda V Ellis, Peter Kingshott","doi":"10.1002/cssc.202402098","DOIUrl":null,"url":null,"abstract":"<p><p>The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase. IONPs were characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). A novel electrochemical method was developed for the silanization of IONPs using tetraethoxysilane (TEOS), (3-mercaptopropyl)trimethoxysilane (MPTMS) and (3-aminopropyl)triethoxysilane (APTES). The resulting silane-modified IONPs were evaluated for the magnetic removal of Pb2+ ions, with TEOS-modified IONPs demonstrating superior performance. This material exhibited a high adsorption capacity of 519 mg/g at a Pb2+ ion concentration of 300 ppm, and high removal efficiency across a range of Pb2+ ion concentrations, attributed to its Fe2O3@SiO2 core-shell structure. This study highlights the potential of the electrochemical synthesis and silanization of nanoparticles for heavy metal remediation in water.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402098"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrosynthesis of Silane-Modified Magnetic Nanoparticles for Efficient Lead Ion Removal.\",\"authors\":\"Ayman Esmat Ahmed Elkholy, Kingsley Poon, Gurvinder Singh, Marcus Giansiracusa, Kimberley L Callaghan, Colette Boskovic, Amanda V Ellis, Peter Kingshott\",\"doi\":\"10.1002/cssc.202402098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase. IONPs were characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). A novel electrochemical method was developed for the silanization of IONPs using tetraethoxysilane (TEOS), (3-mercaptopropyl)trimethoxysilane (MPTMS) and (3-aminopropyl)triethoxysilane (APTES). The resulting silane-modified IONPs were evaluated for the magnetic removal of Pb2+ ions, with TEOS-modified IONPs demonstrating superior performance. This material exhibited a high adsorption capacity of 519 mg/g at a Pb2+ ion concentration of 300 ppm, and high removal efficiency across a range of Pb2+ ion concentrations, attributed to its Fe2O3@SiO2 core-shell structure. This study highlights the potential of the electrochemical synthesis and silanization of nanoparticles for heavy metal remediation in water.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402098\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402098\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402098","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

重金属离子,如铅(Pb2+),由于其高毒性和在生物体中的生物积累,从水系统中去除是至关重要的。本研究提出了一种用于磁性去除Pb2+离子的氧化铁纳米颗粒(IONPs)的合成和表面改性的直接方法。在不同电压(10-40 V)下电合成IONPs,在40 V下获得最佳磁性能,从而在γ-磁铁矿(γ-Fe2O3)相中获得高结晶性和磁性的IONPs。利用x射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、振动样品磁强计(VSM)、透射电子显微镜(TEM)和x射线光电子能谱(XPS)等多种技术对IONPs进行了表征。采用四乙氧基硅烷(TEOS)、(3-巯基丙基)三甲氧基硅烷(MPTMS)和(3-氨基丙基)三乙氧基硅烷(APTES),建立了一种新的电化学方法。结果表明,硅烷修饰的IONPs对Pb2+离子的磁性去除效果较好。由于其Fe2O3@SiO2核壳结构,该材料在Pb2+浓度为300 ppm时具有519 mg/g的高吸附量,并且在Pb2+浓度范围内具有较高的去除效率。该研究强调了电化学合成和硅烷化纳米颗粒在水中重金属修复中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrosynthesis of Silane-Modified Magnetic Nanoparticles for Efficient Lead Ion Removal.

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase. IONPs were characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). A novel electrochemical method was developed for the silanization of IONPs using tetraethoxysilane (TEOS), (3-mercaptopropyl)trimethoxysilane (MPTMS) and (3-aminopropyl)triethoxysilane (APTES). The resulting silane-modified IONPs were evaluated for the magnetic removal of Pb2+ ions, with TEOS-modified IONPs demonstrating superior performance. This material exhibited a high adsorption capacity of 519 mg/g at a Pb2+ ion concentration of 300 ppm, and high removal efficiency across a range of Pb2+ ion concentrations, attributed to its Fe2O3@SiO2 core-shell structure. This study highlights the potential of the electrochemical synthesis and silanization of nanoparticles for heavy metal remediation in water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信