电解质对PCN-224(Co)氧还原反应的影响

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-16 DOI:10.1002/cssc.202402295
Dana Rademaker, Stefania Tanase, Dennis G H Hetterscheid
{"title":"电解质对PCN-224(Co)氧还原反应的影响","authors":"Dana Rademaker, Stefania Tanase, Dennis G H Hetterscheid","doi":"10.1002/cssc.202402295","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalysis in metal-organic frameworks is an interplay between the diffusion of charges, the intrinsic catalytic rate, and the mass-transport of reactants through the pores. Here a systematic study is carried out to investigate the role of the electrolyte nature and concentration on the oxygen reduction reaction (ORR) with the PCN-224(Co) MOF in aqueous electrolyte. It was found that the ORR activity is slightly influenced by the nature of the ions in solution, providing that the ionic strength is high enough to minimize the resistivity during the measurement. The ORR activity was found to be 1.3-1.5 times lower in lithium acetate compared to sodium acetate, while the ORR activity in cesium acetate was 1.3-1.6 times higher compared to the activity in sodium acetate. Moreover, there was no dependency found of the ORR catalysis on the size of the anion, buffer concentration, or oxygen concentration. These findings suggest that ORR catalysis in PCN-224(Co) is limited by the intrinsic ORR rate at the active site rather than charge transport through the porous structure or substrate transport in the pores. Therefore, optimization of ORR catalysis with this MOF might be achieved by the optimization of the electronics at the cobalt active site.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402295"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Electrolyte on the Oxygen Reduction Reaction with a MOF Embedded Co-Porphyrin.\",\"authors\":\"Dana Rademaker, Stefania Tanase, Dennis G H Hetterscheid\",\"doi\":\"10.1002/cssc.202402295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrocatalysis in metal-organic frameworks is an interplay between the diffusion of charges, the intrinsic catalytic rate, and the mass-transport of reactants through the pores. Here a systematic study is carried out to investigate the role of the electrolyte nature and concentration on the oxygen reduction reaction (ORR) with the PCN-224(Co) MOF in aqueous electrolyte. It was found that the ORR activity is slightly influenced by the nature of the ions in solution, providing that the ionic strength is high enough to minimize the resistivity during the measurement. The ORR activity was found to be 1.3-1.5 times lower in lithium acetate compared to sodium acetate, while the ORR activity in cesium acetate was 1.3-1.6 times higher compared to the activity in sodium acetate. Moreover, there was no dependency found of the ORR catalysis on the size of the anion, buffer concentration, or oxygen concentration. These findings suggest that ORR catalysis in PCN-224(Co) is limited by the intrinsic ORR rate at the active site rather than charge transport through the porous structure or substrate transport in the pores. Therefore, optimization of ORR catalysis with this MOF might be achieved by the optimization of the electronics at the cobalt active site.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402295\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402295\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402295","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属-有机框架中的电催化是电荷扩散、本征催化速率和反应物通过孔隙的质量传递之间的相互作用。本文系统地研究了电解质性质和浓度对水溶液中PCN-224(Co) MOF与氧还原反应(ORR)的影响。研究发现,溶液中离子的性质对ORR活性的影响很小,前提是离子强度足够高,在测量过程中使电阻率最小。ORR活性在乙酸锂中比在乙酸钠中低1.3 ~ 1.5倍,在乙酸铯中比在乙酸钠中高1.3 ~ 1.6倍。此外,没有发现ORR催化对阴离子大小、缓冲液浓度或氧浓度的依赖。这些发现表明,在PCN-224(Co)中,ORR的催化作用受限于活性位点的内在ORR速率,而不是通过多孔结构的电荷传输或孔中的底物传输。因此,可以通过优化钴活性位点的电子器件来优化该MOF的ORR催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of the Electrolyte on the Oxygen Reduction Reaction with a MOF Embedded Co-Porphyrin.

Electrocatalysis in metal-organic frameworks is an interplay between the diffusion of charges, the intrinsic catalytic rate, and the mass-transport of reactants through the pores. Here a systematic study is carried out to investigate the role of the electrolyte nature and concentration on the oxygen reduction reaction (ORR) with the PCN-224(Co) MOF in aqueous electrolyte. It was found that the ORR activity is slightly influenced by the nature of the ions in solution, providing that the ionic strength is high enough to minimize the resistivity during the measurement. The ORR activity was found to be 1.3-1.5 times lower in lithium acetate compared to sodium acetate, while the ORR activity in cesium acetate was 1.3-1.6 times higher compared to the activity in sodium acetate. Moreover, there was no dependency found of the ORR catalysis on the size of the anion, buffer concentration, or oxygen concentration. These findings suggest that ORR catalysis in PCN-224(Co) is limited by the intrinsic ORR rate at the active site rather than charge transport through the porous structure or substrate transport in the pores. Therefore, optimization of ORR catalysis with this MOF might be achieved by the optimization of the electronics at the cobalt active site.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信