Igor Bychko, Yaroslav Kurys, Olena Pariiska, Olga Z Didenko, Denys O Mazur, Peter E Strizhak, Vyacheslav G Koshechko, Vitaly D Pokhodenko
{"title":"聚苯胺在分子氢加氢反应中的催化活性。","authors":"Igor Bychko, Yaroslav Kurys, Olena Pariiska, Olga Z Didenko, Denys O Mazur, Peter E Strizhak, Vyacheslav G Koshechko, Vitaly D Pokhodenko","doi":"10.1002/cplu.202400674","DOIUrl":null,"url":null,"abstract":"<p><p>This study unveils a novel property of polyaniline by establishing its catalytic activity in heterogeneous hydrogenation with molecular hydrogen. Polyaniline was activated by heat-treating at different temperatures in a hydrogen atmosphere. The sample treated at 300 °C exhibited the highest catalytic activity for ethylene hydrogenation in the gas phase at atmospheric pressure and for p-nitrotoluene or α-methylstyrene hydrogenation in the liquid phase. XRD, HRTEM, Raman, XPS, UV-VIS, FTIR, and elemental analysis data as well as electrochemical study indicate that catalytic activity is associated with the conjugated structure of undoped emeraldine base, whereas the polymer cross-linking or an increase in chlorine residues correlates with catalyst deactivation. These results pave the way to use conducting polymers as catalysts for hydrogenation with molecular hydrogen, opening new avenues for their application in catalysis.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400674"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Catalytic Activity of Polyaniline in Hydrogenation Reactions with Molecular Hydrogen.\",\"authors\":\"Igor Bychko, Yaroslav Kurys, Olena Pariiska, Olga Z Didenko, Denys O Mazur, Peter E Strizhak, Vyacheslav G Koshechko, Vitaly D Pokhodenko\",\"doi\":\"10.1002/cplu.202400674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study unveils a novel property of polyaniline by establishing its catalytic activity in heterogeneous hydrogenation with molecular hydrogen. Polyaniline was activated by heat-treating at different temperatures in a hydrogen atmosphere. The sample treated at 300 °C exhibited the highest catalytic activity for ethylene hydrogenation in the gas phase at atmospheric pressure and for p-nitrotoluene or α-methylstyrene hydrogenation in the liquid phase. XRD, HRTEM, Raman, XPS, UV-VIS, FTIR, and elemental analysis data as well as electrochemical study indicate that catalytic activity is associated with the conjugated structure of undoped emeraldine base, whereas the polymer cross-linking or an increase in chlorine residues correlates with catalyst deactivation. These results pave the way to use conducting polymers as catalysts for hydrogenation with molecular hydrogen, opening new avenues for their application in catalysis.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202400674\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400674\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400674","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Catalytic Activity of Polyaniline in Hydrogenation Reactions with Molecular Hydrogen.
This study unveils a novel property of polyaniline by establishing its catalytic activity in heterogeneous hydrogenation with molecular hydrogen. Polyaniline was activated by heat-treating at different temperatures in a hydrogen atmosphere. The sample treated at 300 °C exhibited the highest catalytic activity for ethylene hydrogenation in the gas phase at atmospheric pressure and for p-nitrotoluene or α-methylstyrene hydrogenation in the liquid phase. XRD, HRTEM, Raman, XPS, UV-VIS, FTIR, and elemental analysis data as well as electrochemical study indicate that catalytic activity is associated with the conjugated structure of undoped emeraldine base, whereas the polymer cross-linking or an increase in chlorine residues correlates with catalyst deactivation. These results pave the way to use conducting polymers as catalysts for hydrogenation with molecular hydrogen, opening new avenues for their application in catalysis.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.