Zihan Zhu, Yan Zhang, Cui He, Yimin Jin, Wei Bian, Xinjing Tang, Jing Wang
{"title":"负载碳点的肿瘤微环境响应多核纳米复合物用于光热/化学动力联合治疗乳腺癌。","authors":"Zihan Zhu, Yan Zhang, Cui He, Yimin Jin, Wei Bian, Xinjing Tang, Jing Wang","doi":"10.1002/cmdc.202400983","DOIUrl":null,"url":null,"abstract":"<p><p>Low cure rate and high death rate of cancers have seriously threatened human health. The combining multiple therapies is a promising strategy for cancer treatment. In this study, we construct a novel multinucleated nanocomplex loaded with carbon dots (CDs-SA@TAMn) that responds to tumor microenvironment for combined photothermal/chemodynamic cancer therapy. Fluorescence imaging results show that CDs-SA@TAMn can effectively accumulated in tumor sites. In acidic tumor microenvironment, CDs-SA@TAMn will release Mn2+, activating chemodynamic therapy and producing substantial reactive oxygen species (ROS) to kill tumor. Additionally, when irradiated by an 808 nm laser, CDs-SA@TAMn will exert the photothermal effect to realize high performance of cancer hyperthermia treatment. The nanocomplexes feather simple preparation, low toxicity, controlled release and imaging-guided therapy, showcasing the potential of precise and high performance anti-tumor combination therapy in biomedical applications.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400983"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumor microenvironment-responsive multinucleated nanocomplexes loaded with carbon dots for combined photothermal/chemodynamic therapy of breast cancer.\",\"authors\":\"Zihan Zhu, Yan Zhang, Cui He, Yimin Jin, Wei Bian, Xinjing Tang, Jing Wang\",\"doi\":\"10.1002/cmdc.202400983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low cure rate and high death rate of cancers have seriously threatened human health. The combining multiple therapies is a promising strategy for cancer treatment. In this study, we construct a novel multinucleated nanocomplex loaded with carbon dots (CDs-SA@TAMn) that responds to tumor microenvironment for combined photothermal/chemodynamic cancer therapy. Fluorescence imaging results show that CDs-SA@TAMn can effectively accumulated in tumor sites. In acidic tumor microenvironment, CDs-SA@TAMn will release Mn2+, activating chemodynamic therapy and producing substantial reactive oxygen species (ROS) to kill tumor. Additionally, when irradiated by an 808 nm laser, CDs-SA@TAMn will exert the photothermal effect to realize high performance of cancer hyperthermia treatment. The nanocomplexes feather simple preparation, low toxicity, controlled release and imaging-guided therapy, showcasing the potential of precise and high performance anti-tumor combination therapy in biomedical applications.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400983\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400983\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400983","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Tumor microenvironment-responsive multinucleated nanocomplexes loaded with carbon dots for combined photothermal/chemodynamic therapy of breast cancer.
Low cure rate and high death rate of cancers have seriously threatened human health. The combining multiple therapies is a promising strategy for cancer treatment. In this study, we construct a novel multinucleated nanocomplex loaded with carbon dots (CDs-SA@TAMn) that responds to tumor microenvironment for combined photothermal/chemodynamic cancer therapy. Fluorescence imaging results show that CDs-SA@TAMn can effectively accumulated in tumor sites. In acidic tumor microenvironment, CDs-SA@TAMn will release Mn2+, activating chemodynamic therapy and producing substantial reactive oxygen species (ROS) to kill tumor. Additionally, when irradiated by an 808 nm laser, CDs-SA@TAMn will exert the photothermal effect to realize high performance of cancer hyperthermia treatment. The nanocomplexes feather simple preparation, low toxicity, controlled release and imaging-guided therapy, showcasing the potential of precise and high performance anti-tumor combination therapy in biomedical applications.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.