间苯二酚基博拉两亲性季铵化合物。

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL
ChemMedChem Pub Date : 2025-01-16 DOI:10.1002/cmdc.202400932
Johanna Y D Asante, Caroline M Casey, Elise L Bezold, Asantha Fernando, Diana McDonough, William M Wuest, Kevin P C Minbiole
{"title":"间苯二酚基博拉两亲性季铵化合物。","authors":"Johanna Y D Asante, Caroline M Casey, Elise L Bezold, Asantha Fernando, Diana McDonough, William M Wuest, Kevin P C Minbiole","doi":"10.1002/cmdc.202400932","DOIUrl":null,"url":null,"abstract":"<p><p>Quaternary ammonium compounds (QACs) play crucial disinfectant roles in healthcare, industry, and domestic settings. Most commercially utilized QACs like benzalkonium chloride have a common architectural theme, leading to a rise in bacterial resistance and urgent need for novel structural classes. Some potent QACs such as chlorhexidine (CHX) and octenidine (OCT) feature a bolaamphiphilic architecture, comprised of two cationic centers at the molecular periphery and a non-polar region connecting them; these compounds show promise to elude bacterial resistance mechanisms. Inspired by such structures, we synthesized a series of 43 biscationic amphiphilic compounds focused on a resorcinol core, featuring flexibility of linker lengths, alkyl tails, and relative substituent positioning, to study their structure activity relationships (SARs). Antibacterial activity evaluation against a panel of gram-positive and gram-negative strains, including ESKAPE pathogens (A. baumannii, P. aeruginosa), were encouraging, with minimum inhibitory concentrations (MICs) of 0.5-4 μM against all tested strains for select compounds. Ten prepared compounds bearing either 17 or 18 total side chain carbons demonstrated uniformly strong antibacterial activity against P. aeruginosa (MIC 4-16 μM) and 6 other strains (MIC ≤4 μM), irrespective of cationic spacing. These findings promise to further extend the application of bolaamphiphilic QACs as a novel class of disinfectants.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400932"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resorcinol-based Bolaamphiphilic Quaternary Ammonium Compounds.\",\"authors\":\"Johanna Y D Asante, Caroline M Casey, Elise L Bezold, Asantha Fernando, Diana McDonough, William M Wuest, Kevin P C Minbiole\",\"doi\":\"10.1002/cmdc.202400932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quaternary ammonium compounds (QACs) play crucial disinfectant roles in healthcare, industry, and domestic settings. Most commercially utilized QACs like benzalkonium chloride have a common architectural theme, leading to a rise in bacterial resistance and urgent need for novel structural classes. Some potent QACs such as chlorhexidine (CHX) and octenidine (OCT) feature a bolaamphiphilic architecture, comprised of two cationic centers at the molecular periphery and a non-polar region connecting them; these compounds show promise to elude bacterial resistance mechanisms. Inspired by such structures, we synthesized a series of 43 biscationic amphiphilic compounds focused on a resorcinol core, featuring flexibility of linker lengths, alkyl tails, and relative substituent positioning, to study their structure activity relationships (SARs). Antibacterial activity evaluation against a panel of gram-positive and gram-negative strains, including ESKAPE pathogens (A. baumannii, P. aeruginosa), were encouraging, with minimum inhibitory concentrations (MICs) of 0.5-4 μM against all tested strains for select compounds. Ten prepared compounds bearing either 17 or 18 total side chain carbons demonstrated uniformly strong antibacterial activity against P. aeruginosa (MIC 4-16 μM) and 6 other strains (MIC ≤4 μM), irrespective of cationic spacing. These findings promise to further extend the application of bolaamphiphilic QACs as a novel class of disinfectants.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400932\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400932\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400932","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

季铵化合物(QACs)在医疗保健、工业和家庭环境中发挥着至关重要的消毒作用。大多数商业上使用的QACs,如苯扎氯铵,都有一个共同的建筑主题,导致细菌耐药性的上升和迫切需要新的结构类别。一些有效的qac,如氯己定(CHX)和辛替尼定(OCT)具有亲bolaa两亲性结构,由分子外围的两个阳离子中心和连接它们的非极性区域组成;这些化合物有望避开细菌的耐药机制。受这种结构的启发,我们以间苯二酚为核心合成了一系列43种具有连接体长度、烷基尾和相对取代基定位灵活性的双基两亲性化合物,以研究它们的结构活性关系(sar)。对一组革兰氏阳性和革兰氏阴性菌株,包括ESKAPE病原体(鲍曼假单胞菌,铜绿假单胞菌)的抗菌活性评估令人鼓舞,对所有测试菌株的最低抑制浓度(mic)为0.5-4 μM。10个总侧链碳为17或18的化合物对铜绿假单胞菌(P. aeruginosa, MIC 4 ~ 16 μM)和其他6株(MIC≤4 μM)均表现出较强的抗菌活性,且与阳离子间距无关。这些发现有望进一步扩展亲bola两亲性QACs作为一类新型消毒剂的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resorcinol-based Bolaamphiphilic Quaternary Ammonium Compounds.

Quaternary ammonium compounds (QACs) play crucial disinfectant roles in healthcare, industry, and domestic settings. Most commercially utilized QACs like benzalkonium chloride have a common architectural theme, leading to a rise in bacterial resistance and urgent need for novel structural classes. Some potent QACs such as chlorhexidine (CHX) and octenidine (OCT) feature a bolaamphiphilic architecture, comprised of two cationic centers at the molecular periphery and a non-polar region connecting them; these compounds show promise to elude bacterial resistance mechanisms. Inspired by such structures, we synthesized a series of 43 biscationic amphiphilic compounds focused on a resorcinol core, featuring flexibility of linker lengths, alkyl tails, and relative substituent positioning, to study their structure activity relationships (SARs). Antibacterial activity evaluation against a panel of gram-positive and gram-negative strains, including ESKAPE pathogens (A. baumannii, P. aeruginosa), were encouraging, with minimum inhibitory concentrations (MICs) of 0.5-4 μM against all tested strains for select compounds. Ten prepared compounds bearing either 17 or 18 total side chain carbons demonstrated uniformly strong antibacterial activity against P. aeruginosa (MIC 4-16 μM) and 6 other strains (MIC ≤4 μM), irrespective of cationic spacing. These findings promise to further extend the application of bolaamphiphilic QACs as a novel class of disinfectants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信