Ahcène Boumendjel, Ingrid Fatima Zattoni, Bruna Estelita Rugisnk, Isadora da Silva Zanzarini, Alan Guilherme Gonçalves, Vivian Rotuno Moure, Glaucio Valdameri
{"title":"胆固醇对乳腺癌抵抗蛋白的影响:化学工具的合成及生物学评价研究","authors":"Ahcène Boumendjel, Ingrid Fatima Zattoni, Bruna Estelita Rugisnk, Isadora da Silva Zanzarini, Alan Guilherme Gonçalves, Vivian Rotuno Moure, Glaucio Valdameri","doi":"10.1002/cmdc.202400712","DOIUrl":null,"url":null,"abstract":"<p><p>The breast cancer resistance protein (BCRP/ABCG2) plays a major role in the multidrug resistance of cancers toward chemotherapeutic treatments. It was demonstrated that cholesterol regulates the ABCG2 activity, suggesting that lower levels of membrane cholesterol decrease the ABCG2 activity in mammalian cells. However, the precise mechanism remains unclear. To better understand the role of cholesterol in the ABCG2 activity, we studied the ABCG2-mediated efflux of different substrates in the presence of different concentrations of cholesterol. Moreover, we synthetized derivatives of cholesterol linked either to known ABCG2 inhibitors or fluorescents probes. A chalcone-cholesterol was synthetized to investigate the influence of cholesterol on ABCG2 inhibition, and a BODIPY-cholesterol was developed to track cholesterol trafficking on mammalian cells and investigate the behavior of cholesterol as an ABCG2 substrate. The obtained results with three different substrates of ABCG2 showed that cholesterol did not affect the intracellular amount of substrates nor the transport activity.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400712"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Cholesterol on the Breast Cancer Resistance Protein: Studies through the Synthesis and Biological Evaluation of Chemical Tools.\",\"authors\":\"Ahcène Boumendjel, Ingrid Fatima Zattoni, Bruna Estelita Rugisnk, Isadora da Silva Zanzarini, Alan Guilherme Gonçalves, Vivian Rotuno Moure, Glaucio Valdameri\",\"doi\":\"10.1002/cmdc.202400712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The breast cancer resistance protein (BCRP/ABCG2) plays a major role in the multidrug resistance of cancers toward chemotherapeutic treatments. It was demonstrated that cholesterol regulates the ABCG2 activity, suggesting that lower levels of membrane cholesterol decrease the ABCG2 activity in mammalian cells. However, the precise mechanism remains unclear. To better understand the role of cholesterol in the ABCG2 activity, we studied the ABCG2-mediated efflux of different substrates in the presence of different concentrations of cholesterol. Moreover, we synthetized derivatives of cholesterol linked either to known ABCG2 inhibitors or fluorescents probes. A chalcone-cholesterol was synthetized to investigate the influence of cholesterol on ABCG2 inhibition, and a BODIPY-cholesterol was developed to track cholesterol trafficking on mammalian cells and investigate the behavior of cholesterol as an ABCG2 substrate. The obtained results with three different substrates of ABCG2 showed that cholesterol did not affect the intracellular amount of substrates nor the transport activity.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400712\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400712\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400712","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Effects of Cholesterol on the Breast Cancer Resistance Protein: Studies through the Synthesis and Biological Evaluation of Chemical Tools.
The breast cancer resistance protein (BCRP/ABCG2) plays a major role in the multidrug resistance of cancers toward chemotherapeutic treatments. It was demonstrated that cholesterol regulates the ABCG2 activity, suggesting that lower levels of membrane cholesterol decrease the ABCG2 activity in mammalian cells. However, the precise mechanism remains unclear. To better understand the role of cholesterol in the ABCG2 activity, we studied the ABCG2-mediated efflux of different substrates in the presence of different concentrations of cholesterol. Moreover, we synthetized derivatives of cholesterol linked either to known ABCG2 inhibitors or fluorescents probes. A chalcone-cholesterol was synthetized to investigate the influence of cholesterol on ABCG2 inhibition, and a BODIPY-cholesterol was developed to track cholesterol trafficking on mammalian cells and investigate the behavior of cholesterol as an ABCG2 substrate. The obtained results with three different substrates of ABCG2 showed that cholesterol did not affect the intracellular amount of substrates nor the transport activity.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.