用dNLR和GNRI联合阿特唑单抗和贝伐单抗治疗肝细胞癌的疗效评价

IF 2.9 2区 医学 Q2 ONCOLOGY
Cancer Medicine Pub Date : 2025-01-01 DOI:10.1002/cam4.70618
Atsushi Naganuma, Satoru Kakizaki, Atsushi Hiraoka, Toshifumi Tada, Takeshi Hatanaka, Kazuya Kariyama, Joji Tani, Masanori Atsukawa, Koichi Takaguchi, Ei Itobayashi, Shinya Fukunishi, Kunihiko Tsuji, Toru Ishikawa, Kazuto Tajiri, Hidenori Toyoda, Chikara Ogawa, Hiroki Nishikawa, Takashi Nishimura, Kazuhito Kawata, Hisashi Kosaka, Masashi Hirooka, Yutaka Yata, Hideko Ohama, Hidekatsu Kuroda, Tomomitsu Matono, Tomoko Aoki, Yuki Kanayama, Kazunari Tanaka, Fujimasa Tada, Kazuhiro Nouso, Asahiro Morishita, Akemi Tsutsui, Takuya Nagano, Norio Itokawa, Tomomi Okubo, Taeang Arai, Michitaka Imai, Shinichiro Nakamura, Hirayuki Enomoto, Masaki Kaibori, Yoichi Hiasa, Masatoshi Kudo, Takashi Kumada
{"title":"用dNLR和GNRI联合阿特唑单抗和贝伐单抗治疗肝细胞癌的疗效评价","authors":"Atsushi Naganuma, Satoru Kakizaki, Atsushi Hiraoka, Toshifumi Tada, Takeshi Hatanaka, Kazuya Kariyama, Joji Tani, Masanori Atsukawa, Koichi Takaguchi, Ei Itobayashi, Shinya Fukunishi, Kunihiko Tsuji, Toru Ishikawa, Kazuto Tajiri, Hidenori Toyoda, Chikara Ogawa, Hiroki Nishikawa, Takashi Nishimura, Kazuhito Kawata, Hisashi Kosaka, Masashi Hirooka, Yutaka Yata, Hideko Ohama, Hidekatsu Kuroda, Tomomitsu Matono, Tomoko Aoki, Yuki Kanayama, Kazunari Tanaka, Fujimasa Tada, Kazuhiro Nouso, Asahiro Morishita, Akemi Tsutsui, Takuya Nagano, Norio Itokawa, Tomomi Okubo, Taeang Arai, Michitaka Imai, Shinichiro Nakamura, Hirayuki Enomoto, Masaki Kaibori, Yoichi Hiasa, Masatoshi Kudo, Takashi Kumada","doi":"10.1002/cam4.70618","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aims to investigate the clinical utility of the derived neutrophil-to-lymphocyte ratio (dNLR) and the Geriatric Nutritional Risk Index (GNRI) in predicting treatment outcomes for patients with unresectable hepatocellular carcinoma (HCC) undergoing combination therapy with atezolizumab and bevacizumab (Atez/Bev).</p><p><strong>Methods: </strong>A retrospective analysis was conducted on 310 patients. The dNLR, NLR, and GNRI were calculated, and their impact on progression-free survival (PFS) and overall survival (OS) was assessed. The formula for calculating dNLR is: (neutrophil count ÷ [white blood cell count-neutrophil count]), which means it does not require lymphocyte count. Furthermore, GNRI-dNLR and GNRI-NLR scores were defined, and their prognostic values were also analyzed.</p><p><strong>Results: </strong>The median PFS of this cohort was 7.2 months (95% CI: 5.9-8.5), and the median OS was 24.9 months (95% CI: 19.6-30.2). The dNLR, NLR, and GNRI were significant predictors of both PFS and OS. The dNLR showed a significant correlation with the NLR (Pearson correlation coefficient, p < 0.0001). Patients with high GNRI-dNLR scores demonstrated significantly worse PFS and OS compared to those with low scores (p = 0.001, p < 0.001, respectively). Compared to stratification by GNRI alone, the GNRI-dNLR or GNRI-NLR provided better stratification for both PFS and OS.</p><p><strong>Conclusion: </strong>The dNLR could be a valuable substitute for NLR as a prognostic marker in patients with unresectable HCC undergoing Atez/Bev therapy. It offers a feasible alternative for databases lacking lymphocyte count information, ensuring comprehensive patient stratification and outcome prediction. The GNRI-NLR or GNRI-dNLR score provided better stratification compared to GNRI alone.</p>","PeriodicalId":139,"journal":{"name":"Cancer Medicine","volume":"14 2","pages":"e70618"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Treatment Outcomes Using dNLR and GNRI in Combination Therapy With Atezolizumab and Bevacizumab for Hepatocellular Carcinoma.\",\"authors\":\"Atsushi Naganuma, Satoru Kakizaki, Atsushi Hiraoka, Toshifumi Tada, Takeshi Hatanaka, Kazuya Kariyama, Joji Tani, Masanori Atsukawa, Koichi Takaguchi, Ei Itobayashi, Shinya Fukunishi, Kunihiko Tsuji, Toru Ishikawa, Kazuto Tajiri, Hidenori Toyoda, Chikara Ogawa, Hiroki Nishikawa, Takashi Nishimura, Kazuhito Kawata, Hisashi Kosaka, Masashi Hirooka, Yutaka Yata, Hideko Ohama, Hidekatsu Kuroda, Tomomitsu Matono, Tomoko Aoki, Yuki Kanayama, Kazunari Tanaka, Fujimasa Tada, Kazuhiro Nouso, Asahiro Morishita, Akemi Tsutsui, Takuya Nagano, Norio Itokawa, Tomomi Okubo, Taeang Arai, Michitaka Imai, Shinichiro Nakamura, Hirayuki Enomoto, Masaki Kaibori, Yoichi Hiasa, Masatoshi Kudo, Takashi Kumada\",\"doi\":\"10.1002/cam4.70618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>This study aims to investigate the clinical utility of the derived neutrophil-to-lymphocyte ratio (dNLR) and the Geriatric Nutritional Risk Index (GNRI) in predicting treatment outcomes for patients with unresectable hepatocellular carcinoma (HCC) undergoing combination therapy with atezolizumab and bevacizumab (Atez/Bev).</p><p><strong>Methods: </strong>A retrospective analysis was conducted on 310 patients. The dNLR, NLR, and GNRI were calculated, and their impact on progression-free survival (PFS) and overall survival (OS) was assessed. The formula for calculating dNLR is: (neutrophil count ÷ [white blood cell count-neutrophil count]), which means it does not require lymphocyte count. Furthermore, GNRI-dNLR and GNRI-NLR scores were defined, and their prognostic values were also analyzed.</p><p><strong>Results: </strong>The median PFS of this cohort was 7.2 months (95% CI: 5.9-8.5), and the median OS was 24.9 months (95% CI: 19.6-30.2). The dNLR, NLR, and GNRI were significant predictors of both PFS and OS. The dNLR showed a significant correlation with the NLR (Pearson correlation coefficient, p < 0.0001). Patients with high GNRI-dNLR scores demonstrated significantly worse PFS and OS compared to those with low scores (p = 0.001, p < 0.001, respectively). Compared to stratification by GNRI alone, the GNRI-dNLR or GNRI-NLR provided better stratification for both PFS and OS.</p><p><strong>Conclusion: </strong>The dNLR could be a valuable substitute for NLR as a prognostic marker in patients with unresectable HCC undergoing Atez/Bev therapy. It offers a feasible alternative for databases lacking lymphocyte count information, ensuring comprehensive patient stratification and outcome prediction. The GNRI-NLR or GNRI-dNLR score provided better stratification compared to GNRI alone.</p>\",\"PeriodicalId\":139,\"journal\":{\"name\":\"Cancer Medicine\",\"volume\":\"14 2\",\"pages\":\"e70618\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cam4.70618\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cam4.70618","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在探讨衍生性中性粒细胞与淋巴细胞比率(dNLR)和老年营养风险指数(GNRI)在预测不可切除的肝细胞癌(HCC)患者接受阿特唑单抗和贝伐单抗(Atez/Bev)联合治疗的治疗结果中的临床应用。方法:对310例患者进行回顾性分析。计算dNLR、NLR和GNRI,并评估其对无进展生存期(PFS)和总生存期(OS)的影响。dNLR的计算公式为:(中性粒细胞计数÷[白细胞计数-中性粒细胞计数]),即不需要淋巴细胞计数。此外,定义GNRI-dNLR和GNRI-NLR评分,并分析其预后价值。结果:该队列的中位PFS为7.2个月(95% CI: 5.9-8.5),中位OS为24.9个月(95% CI: 19.6-30.2)。dNLR、NLR和GNRI是PFS和OS的重要预测因子。结论:对于无法切除的肝癌患者,在接受Atez/Bev治疗时,dNLR可作为一种有价值的预后指标替代NLR。它为缺乏淋巴细胞计数信息的数据库提供了一种可行的替代方案,确保了全面的患者分层和预后预测。与单独使用GNRI相比,GNRI- nlr或GNRI- dnlr评分提供了更好的分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Treatment Outcomes Using dNLR and GNRI in Combination Therapy With Atezolizumab and Bevacizumab for Hepatocellular Carcinoma.

Aim: This study aims to investigate the clinical utility of the derived neutrophil-to-lymphocyte ratio (dNLR) and the Geriatric Nutritional Risk Index (GNRI) in predicting treatment outcomes for patients with unresectable hepatocellular carcinoma (HCC) undergoing combination therapy with atezolizumab and bevacizumab (Atez/Bev).

Methods: A retrospective analysis was conducted on 310 patients. The dNLR, NLR, and GNRI were calculated, and their impact on progression-free survival (PFS) and overall survival (OS) was assessed. The formula for calculating dNLR is: (neutrophil count ÷ [white blood cell count-neutrophil count]), which means it does not require lymphocyte count. Furthermore, GNRI-dNLR and GNRI-NLR scores were defined, and their prognostic values were also analyzed.

Results: The median PFS of this cohort was 7.2 months (95% CI: 5.9-8.5), and the median OS was 24.9 months (95% CI: 19.6-30.2). The dNLR, NLR, and GNRI were significant predictors of both PFS and OS. The dNLR showed a significant correlation with the NLR (Pearson correlation coefficient, p < 0.0001). Patients with high GNRI-dNLR scores demonstrated significantly worse PFS and OS compared to those with low scores (p = 0.001, p < 0.001, respectively). Compared to stratification by GNRI alone, the GNRI-dNLR or GNRI-NLR provided better stratification for both PFS and OS.

Conclusion: The dNLR could be a valuable substitute for NLR as a prognostic marker in patients with unresectable HCC undergoing Atez/Bev therapy. It offers a feasible alternative for databases lacking lymphocyte count information, ensuring comprehensive patient stratification and outcome prediction. The GNRI-NLR or GNRI-dNLR score provided better stratification compared to GNRI alone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Medicine
Cancer Medicine ONCOLOGY-
CiteScore
5.50
自引率
2.50%
发文量
907
审稿时长
19 weeks
期刊介绍: Cancer Medicine is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research from global biomedical researchers across the cancer sciences. The journal will consider submissions from all oncologic specialties, including, but not limited to, the following areas: Clinical Cancer Research Translational research ∙ clinical trials ∙ chemotherapy ∙ radiation therapy ∙ surgical therapy ∙ clinical observations ∙ clinical guidelines ∙ genetic consultation ∙ ethical considerations Cancer Biology: Molecular biology ∙ cellular biology ∙ molecular genetics ∙ genomics ∙ immunology ∙ epigenetics ∙ metabolic studies ∙ proteomics ∙ cytopathology ∙ carcinogenesis ∙ drug discovery and delivery. Cancer Prevention: Behavioral science ∙ psychosocial studies ∙ screening ∙ nutrition ∙ epidemiology and prevention ∙ community outreach. Bioinformatics: Gene expressions profiles ∙ gene regulation networks ∙ genome bioinformatics ∙ pathwayanalysis ∙ prognostic biomarkers. Cancer Medicine publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信