{"title":"时空代谢变化揭示从溃疡性结肠炎到结肠炎相关结直肠癌的转变。","authors":"Ruiqi Sun, Yuanyuan Zhang, Xian Zhao, Tian Tang, Yuepeng Cao, Liu Yang, Yuan Tian, Zunjian Zhang, Pei Zhang, Fengguo Xu","doi":"10.1002/advs.202412551","DOIUrl":null,"url":null,"abstract":"<p>Patients with ulcerative colitis (UC) have a higher risk of developing colorectal cancer (CRC), however, the metabolic shifts during the UC-to-CRC transition remain elusive. In this study, an AOM-DSS-induced three-stage colitis-associated colorectal cancer (CAC) model is constructed and targeted metabolomics analysis and pathway enrichment are performed, uncovering the metabolic changes in this transition. Spatial metabolic trajectories in the “normal-to-normal adjacent tissue (NAT)-to-tumor” transition, and temporal metabolic trajectories in the “colitis-to-dysplasia-to-carcinoma” transition are identified through K-means clustering of 74 spatially and 77 temporally differential metabolites, respectively. The findings reveal two distinct metabolic profile categories during the inflammation-to-cancer progression: those with consistent changes, either increasing (e.g., kynurenic acid, xanthurenic acid) or decreasing (e.g., long-chain fatty acids, LCFAs), and those enriched at specific disease stages (e.g., serotonin). Further analysis of metabolites with consistent temporal trends identifies eicosapentaenoic acid (EPA) as a key metabolite, potentially exerting anti-inflammatory and anti-cancer effects by inhibiting insulin-like growth factor binding protein 5 (IGFBP5). This study reveals novel metabolic mechanisms underlying the transition from UC to CAC and suggests potential targets to delay the progression.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 11","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923922/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temporal and Spatial Metabolic Shifts Revealing the Transition from Ulcerative Colitis to Colitis-Associated Colorectal Cancer\",\"authors\":\"Ruiqi Sun, Yuanyuan Zhang, Xian Zhao, Tian Tang, Yuepeng Cao, Liu Yang, Yuan Tian, Zunjian Zhang, Pei Zhang, Fengguo Xu\",\"doi\":\"10.1002/advs.202412551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Patients with ulcerative colitis (UC) have a higher risk of developing colorectal cancer (CRC), however, the metabolic shifts during the UC-to-CRC transition remain elusive. In this study, an AOM-DSS-induced three-stage colitis-associated colorectal cancer (CAC) model is constructed and targeted metabolomics analysis and pathway enrichment are performed, uncovering the metabolic changes in this transition. Spatial metabolic trajectories in the “normal-to-normal adjacent tissue (NAT)-to-tumor” transition, and temporal metabolic trajectories in the “colitis-to-dysplasia-to-carcinoma” transition are identified through K-means clustering of 74 spatially and 77 temporally differential metabolites, respectively. The findings reveal two distinct metabolic profile categories during the inflammation-to-cancer progression: those with consistent changes, either increasing (e.g., kynurenic acid, xanthurenic acid) or decreasing (e.g., long-chain fatty acids, LCFAs), and those enriched at specific disease stages (e.g., serotonin). Further analysis of metabolites with consistent temporal trends identifies eicosapentaenoic acid (EPA) as a key metabolite, potentially exerting anti-inflammatory and anti-cancer effects by inhibiting insulin-like growth factor binding protein 5 (IGFBP5). This study reveals novel metabolic mechanisms underlying the transition from UC to CAC and suggests potential targets to delay the progression.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923922/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202412551\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202412551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Temporal and Spatial Metabolic Shifts Revealing the Transition from Ulcerative Colitis to Colitis-Associated Colorectal Cancer
Patients with ulcerative colitis (UC) have a higher risk of developing colorectal cancer (CRC), however, the metabolic shifts during the UC-to-CRC transition remain elusive. In this study, an AOM-DSS-induced three-stage colitis-associated colorectal cancer (CAC) model is constructed and targeted metabolomics analysis and pathway enrichment are performed, uncovering the metabolic changes in this transition. Spatial metabolic trajectories in the “normal-to-normal adjacent tissue (NAT)-to-tumor” transition, and temporal metabolic trajectories in the “colitis-to-dysplasia-to-carcinoma” transition are identified through K-means clustering of 74 spatially and 77 temporally differential metabolites, respectively. The findings reveal two distinct metabolic profile categories during the inflammation-to-cancer progression: those with consistent changes, either increasing (e.g., kynurenic acid, xanthurenic acid) or decreasing (e.g., long-chain fatty acids, LCFAs), and those enriched at specific disease stages (e.g., serotonin). Further analysis of metabolites with consistent temporal trends identifies eicosapentaenoic acid (EPA) as a key metabolite, potentially exerting anti-inflammatory and anti-cancer effects by inhibiting insulin-like growth factor binding protein 5 (IGFBP5). This study reveals novel metabolic mechanisms underlying the transition from UC to CAC and suggests potential targets to delay the progression.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.