Fuxing Deng, Gang Xiao, Guilong Tanzhu, Xianjing Chu, Jiaoyang Ning, Ruoyu Lu, Liu Chen, Zijian Zhang, Rongrong Zhou
{"title":"利用与肿瘤免疫异质性相关的放射组学特征预测非小细胞肺癌脑转移患者的生存率","authors":"Fuxing Deng, Gang Xiao, Guilong Tanzhu, Xianjing Chu, Jiaoyang Ning, Ruoyu Lu, Liu Chen, Zijian Zhang, Rongrong Zhou","doi":"10.1002/advs.202412590","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs. Bidirectional stepwise logistic regression is employed to identify significant variables, facilitating the construction of a prognostic model, which is benchmarked against four machine learning algorithms. BM tissue samples are processed for RNA extraction and sequencing. The optimal model achieved an AUC of 0.96 and a C-index of 0.89 in the train set and an AUC of 0.84 with a C-index of 0.78 in the test set, indicating strong predictive performance and generalizability. Patients from Xiangya Hospital are stratified into high-risk (n = 11) and low-risk (n = 30) groups. RNA sequencing revealed an enrichment of immune-related pathways, particularly the interferon (IFN) pathway in the low-risk group. Immune cell infiltration analysis identified a significant presence of CD8<sup>+</sup>-T cells, IFNγ-6/-18 in the low-risk group, suggesting an immunologically favorable tumor microenvironment. These findings highlight the potential of combining radiomic and RNA sequencing data for improved survival predictions and personalized treatment strategies in BM patients from NSCLC.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412590"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Survival Rates in Brain Metastases Patients from Non-Small Cell Lung Cancer Using Radiomic Signatures Associated with Tumor Immune Heterogeneity.\",\"authors\":\"Fuxing Deng, Gang Xiao, Guilong Tanzhu, Xianjing Chu, Jiaoyang Ning, Ruoyu Lu, Liu Chen, Zijian Zhang, Rongrong Zhou\",\"doi\":\"10.1002/advs.202412590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs. Bidirectional stepwise logistic regression is employed to identify significant variables, facilitating the construction of a prognostic model, which is benchmarked against four machine learning algorithms. BM tissue samples are processed for RNA extraction and sequencing. The optimal model achieved an AUC of 0.96 and a C-index of 0.89 in the train set and an AUC of 0.84 with a C-index of 0.78 in the test set, indicating strong predictive performance and generalizability. Patients from Xiangya Hospital are stratified into high-risk (n = 11) and low-risk (n = 30) groups. RNA sequencing revealed an enrichment of immune-related pathways, particularly the interferon (IFN) pathway in the low-risk group. Immune cell infiltration analysis identified a significant presence of CD8<sup>+</sup>-T cells, IFNγ-6/-18 in the low-risk group, suggesting an immunologically favorable tumor microenvironment. These findings highlight the potential of combining radiomic and RNA sequencing data for improved survival predictions and personalized treatment strategies in BM patients from NSCLC.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2412590\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202412590\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412590","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicting Survival Rates in Brain Metastases Patients from Non-Small Cell Lung Cancer Using Radiomic Signatures Associated with Tumor Immune Heterogeneity.
Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs. Bidirectional stepwise logistic regression is employed to identify significant variables, facilitating the construction of a prognostic model, which is benchmarked against four machine learning algorithms. BM tissue samples are processed for RNA extraction and sequencing. The optimal model achieved an AUC of 0.96 and a C-index of 0.89 in the train set and an AUC of 0.84 with a C-index of 0.78 in the test set, indicating strong predictive performance and generalizability. Patients from Xiangya Hospital are stratified into high-risk (n = 11) and low-risk (n = 30) groups. RNA sequencing revealed an enrichment of immune-related pathways, particularly the interferon (IFN) pathway in the low-risk group. Immune cell infiltration analysis identified a significant presence of CD8+-T cells, IFNγ-6/-18 in the low-risk group, suggesting an immunologically favorable tumor microenvironment. These findings highlight the potential of combining radiomic and RNA sequencing data for improved survival predictions and personalized treatment strategies in BM patients from NSCLC.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.