卡宾诱导的五/六元环醚开环反应:拓展了官能团引入和分子结构构建的前沿。

IF 2.9 3区 化学 Q1 CHEMISTRY, ORGANIC
Jun Xiao, Dandan Jiang, Xiujuan Wu, Juanhua Li, Kunming Liu, Bin Huang, Wei Wang
{"title":"卡宾诱导的五/六元环醚开环反应:拓展了官能团引入和分子结构构建的前沿。","authors":"Jun Xiao, Dandan Jiang, Xiujuan Wu, Juanhua Li, Kunming Liu, Bin Huang, Wei Wang","doi":"10.1039/d4ob01923g","DOIUrl":null,"url":null,"abstract":"<p><p>The multi-component ring-opening reactions of cyclic ethers offer an efficient strategy for the rapid introduction of multiple functional groups and the construction of complex molecular architectures. Despite the minimal ring strain in five- and six-membered rings presenting a significant challenge for ring-opening, advancements have been made. Traditional acid-catalyzed pathways have been complemented by a novel approach involving carbene-induced oxonium intermediate formation, which has emerged in recent years and expanded the selectivity of ring-opening reactions. This review outlines the evolution of carbene-induced ring-opening reactions of cyclic ethers over the past two decades, focusing on the development of carbene precursors and the pathways of carbene formation. The insights provided are anticipated to inform and inspire the creation of new carbene sources and the advancement of oxonium intermediates, thereby contributing to the field's progress.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbene-induced ring-opening reactions of five-/six-membered cyclic ethers: expanding the frontiers of functional group introduction and molecular architecture construction.\",\"authors\":\"Jun Xiao, Dandan Jiang, Xiujuan Wu, Juanhua Li, Kunming Liu, Bin Huang, Wei Wang\",\"doi\":\"10.1039/d4ob01923g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The multi-component ring-opening reactions of cyclic ethers offer an efficient strategy for the rapid introduction of multiple functional groups and the construction of complex molecular architectures. Despite the minimal ring strain in five- and six-membered rings presenting a significant challenge for ring-opening, advancements have been made. Traditional acid-catalyzed pathways have been complemented by a novel approach involving carbene-induced oxonium intermediate formation, which has emerged in recent years and expanded the selectivity of ring-opening reactions. This review outlines the evolution of carbene-induced ring-opening reactions of cyclic ethers over the past two decades, focusing on the development of carbene precursors and the pathways of carbene formation. The insights provided are anticipated to inform and inspire the creation of new carbene sources and the advancement of oxonium intermediates, thereby contributing to the field's progress.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ob01923g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01923g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

环醚的多组分开环反应为快速引入多个官能团和构建复杂分子结构提供了一种有效的策略。尽管五元环和六元环的最小环应变对开环提出了重大挑战,但已经取得了进展。传统的酸催化途径已经被一种新的方法所补充,这种方法涉及到羰基诱导的氧鎓中间产物的形成,这是近年来出现的,扩大了开环反应的选择性。本文综述了近二十年来环醚开环反应的发展,重点介绍了环醚前体的研究进展和环醚的形成途径。所提供的见解有望为新的碳源的创造和氧鎓中间体的进步提供信息和启发,从而为该领域的进步做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbene-induced ring-opening reactions of five-/six-membered cyclic ethers: expanding the frontiers of functional group introduction and molecular architecture construction.

The multi-component ring-opening reactions of cyclic ethers offer an efficient strategy for the rapid introduction of multiple functional groups and the construction of complex molecular architectures. Despite the minimal ring strain in five- and six-membered rings presenting a significant challenge for ring-opening, advancements have been made. Traditional acid-catalyzed pathways have been complemented by a novel approach involving carbene-induced oxonium intermediate formation, which has emerged in recent years and expanded the selectivity of ring-opening reactions. This review outlines the evolution of carbene-induced ring-opening reactions of cyclic ethers over the past two decades, focusing on the development of carbene precursors and the pathways of carbene formation. The insights provided are anticipated to inform and inspire the creation of new carbene sources and the advancement of oxonium intermediates, thereby contributing to the field's progress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic & Biomolecular Chemistry
Organic & Biomolecular Chemistry 化学-有机化学
CiteScore
5.50
自引率
9.40%
发文量
1056
审稿时长
1.3 months
期刊介绍: Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信