Xu Liao, Min Tang, Jiejing Li, Runze Guo, Chongbin Zhong, Xiangzhou Chen, Xuwei Zhang, Hongwei Mo, Dongdong Que, Wenjie Yu, Xudong Song, Hekai Li, Yanbin Cai, Pingzhen Yang
{"title":"酸触发级联反应性超分子肽通过恢复氧化还原稳态和保护线粒体功能减轻心肌缺血再灌注损伤。","authors":"Xu Liao, Min Tang, Jiejing Li, Runze Guo, Chongbin Zhong, Xiangzhou Chen, Xuwei Zhang, Hongwei Mo, Dongdong Que, Wenjie Yu, Xudong Song, Hekai Li, Yanbin Cai, Pingzhen Yang","doi":"10.1002/adhm.202404319","DOIUrl":null,"url":null,"abstract":"<p><p>Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes. In this study, a peptide‒drug conjugate OI-FFG-ss-SS31(ISP) is developed by integrating the Nrf2 activator 4-octyl itaconate (OI) and the mitochondria-targeting protective peptide elamipretide (SS31), and its therapeutic potential for myocardial I/R injury is explored. The results showed that ISP could self-assemble into nanofibers in response to the acidic microenvironment and bind to Keap-1 with high affinity, thereby activating Nrf2 and enhancing antioxidant capacity. Simultaneously, the release of SS31 could improve mitochondrial function and reduce ROS, ultimately providing a restoration of redox homeostasis to effectively alleviate myocardial I/R injury. This study presents a promising acid-triggered peptide-drug conjugate for treating myocardial I/R injury.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404319"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid-Triggered Cascaded Responsive Supramolecular Peptide Alleviates Myocardial Ischemia‒Reperfusion Injury by Restoring Redox Homeostasis and Protecting Mitochondrial Function.\",\"authors\":\"Xu Liao, Min Tang, Jiejing Li, Runze Guo, Chongbin Zhong, Xiangzhou Chen, Xuwei Zhang, Hongwei Mo, Dongdong Que, Wenjie Yu, Xudong Song, Hekai Li, Yanbin Cai, Pingzhen Yang\",\"doi\":\"10.1002/adhm.202404319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes. In this study, a peptide‒drug conjugate OI-FFG-ss-SS31(ISP) is developed by integrating the Nrf2 activator 4-octyl itaconate (OI) and the mitochondria-targeting protective peptide elamipretide (SS31), and its therapeutic potential for myocardial I/R injury is explored. The results showed that ISP could self-assemble into nanofibers in response to the acidic microenvironment and bind to Keap-1 with high affinity, thereby activating Nrf2 and enhancing antioxidant capacity. Simultaneously, the release of SS31 could improve mitochondrial function and reduce ROS, ultimately providing a restoration of redox homeostasis to effectively alleviate myocardial I/R injury. This study presents a promising acid-triggered peptide-drug conjugate for treating myocardial I/R injury.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2404319\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202404319\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404319","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Acid-Triggered Cascaded Responsive Supramolecular Peptide Alleviates Myocardial Ischemia‒Reperfusion Injury by Restoring Redox Homeostasis and Protecting Mitochondrial Function.
Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes. In this study, a peptide‒drug conjugate OI-FFG-ss-SS31(ISP) is developed by integrating the Nrf2 activator 4-octyl itaconate (OI) and the mitochondria-targeting protective peptide elamipretide (SS31), and its therapeutic potential for myocardial I/R injury is explored. The results showed that ISP could self-assemble into nanofibers in response to the acidic microenvironment and bind to Keap-1 with high affinity, thereby activating Nrf2 and enhancing antioxidant capacity. Simultaneously, the release of SS31 could improve mitochondrial function and reduce ROS, ultimately providing a restoration of redox homeostasis to effectively alleviate myocardial I/R injury. This study presents a promising acid-triggered peptide-drug conjugate for treating myocardial I/R injury.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.