Ranjith Kumar Ravi Kumar, Iman Haddad, Massamba Mbacké Ndiaye, Martial Marbouty, Joëlle Vinh, Yann Verdier
{"title":"用于多组学分析样品制备的单微流控装置。","authors":"Ranjith Kumar Ravi Kumar, Iman Haddad, Massamba Mbacké Ndiaye, Martial Marbouty, Joëlle Vinh, Yann Verdier","doi":"10.1039/d4lc00919c","DOIUrl":null,"url":null,"abstract":"<p><p>Combining different \"omics\" approaches, such as genomics and proteomics, is necessary to generate a detailed and complete insight into microbiome comprehension. Proper sample collection and processing and accurate analytical methods are crucial in generating reliable data. We previously developed the ChipFilter device for proteomic analysis of microbial samples. We have shown that this device coupled to LC-MS/MS can successfully be used to identify microbial proteins. In the present work, we have developed our workflow to analyze concomitantly proteins and nucleic acids from the same sample. We performed lysis and proteolysis in the device using cultures of <i>E. coli</i>, <i>B. subtilis</i>, and <i>S. cerevisiae</i>. After peptide recovery for LC-MS/MS analysis, DNA from the same samples was recovered and successfully amplified by PCR for the 3 species. This workflow was further extended to a complex microbial mixture of known compositions. Protein analysis was carried out, enabling the identification of more than 5000 proteins. The recovered DNA was sequenced, performing comparable to DNA extracted with a commercial kit without proteolysis. Our results show that the ChipFilter device is suited to prepare samples for parallel proteomic and genomic analyses, which is particularly relevant in the case of low-abundant samples and drastically reduces sampling bias.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single microfluidic device for multi-omics analysis sample preparation.\",\"authors\":\"Ranjith Kumar Ravi Kumar, Iman Haddad, Massamba Mbacké Ndiaye, Martial Marbouty, Joëlle Vinh, Yann Verdier\",\"doi\":\"10.1039/d4lc00919c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Combining different \\\"omics\\\" approaches, such as genomics and proteomics, is necessary to generate a detailed and complete insight into microbiome comprehension. Proper sample collection and processing and accurate analytical methods are crucial in generating reliable data. We previously developed the ChipFilter device for proteomic analysis of microbial samples. We have shown that this device coupled to LC-MS/MS can successfully be used to identify microbial proteins. In the present work, we have developed our workflow to analyze concomitantly proteins and nucleic acids from the same sample. We performed lysis and proteolysis in the device using cultures of <i>E. coli</i>, <i>B. subtilis</i>, and <i>S. cerevisiae</i>. After peptide recovery for LC-MS/MS analysis, DNA from the same samples was recovered and successfully amplified by PCR for the 3 species. This workflow was further extended to a complex microbial mixture of known compositions. Protein analysis was carried out, enabling the identification of more than 5000 proteins. The recovered DNA was sequenced, performing comparable to DNA extracted with a commercial kit without proteolysis. Our results show that the ChipFilter device is suited to prepare samples for parallel proteomic and genomic analyses, which is particularly relevant in the case of low-abundant samples and drastically reduces sampling bias.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00919c\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00919c","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A single microfluidic device for multi-omics analysis sample preparation.
Combining different "omics" approaches, such as genomics and proteomics, is necessary to generate a detailed and complete insight into microbiome comprehension. Proper sample collection and processing and accurate analytical methods are crucial in generating reliable data. We previously developed the ChipFilter device for proteomic analysis of microbial samples. We have shown that this device coupled to LC-MS/MS can successfully be used to identify microbial proteins. In the present work, we have developed our workflow to analyze concomitantly proteins and nucleic acids from the same sample. We performed lysis and proteolysis in the device using cultures of E. coli, B. subtilis, and S. cerevisiae. After peptide recovery for LC-MS/MS analysis, DNA from the same samples was recovered and successfully amplified by PCR for the 3 species. This workflow was further extended to a complex microbial mixture of known compositions. Protein analysis was carried out, enabling the identification of more than 5000 proteins. The recovered DNA was sequenced, performing comparable to DNA extracted with a commercial kit without proteolysis. Our results show that the ChipFilter device is suited to prepare samples for parallel proteomic and genomic analyses, which is particularly relevant in the case of low-abundant samples and drastically reduces sampling bias.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.