Tristan Ranff, Matthew Dennison, Jeroen Bédorf, Stefan Schulze, Nico Zinn, Marcus Bantscheff, Jasper J R M van Heugten, Christian Fufezan
{"title":"肽森林:半监督机器学习集成多个搜索引擎的肽识别。","authors":"Tristan Ranff, Matthew Dennison, Jeroen Bédorf, Stefan Schulze, Nico Zinn, Marcus Bantscheff, Jasper J R M van Heugten, Christian Fufezan","doi":"10.1021/acs.jproteome.4c00686","DOIUrl":null,"url":null,"abstract":"<p><p>The first step in bottom-up proteomics is the assignment of measured fragmentation mass spectra to peptide sequences, also known as peptide spectrum matches. In recent years novel algorithms have pushed the assignment to new heights; unfortunately, different algorithms come with different strengths and weaknesses and choosing the appropriate algorithm poses a challenge for the user. Here we introduce PeptideForest, a semisupervised machine learning approach that integrates the assignments of multiple algorithms to train a random forest classifier to alleviate that issue. Additionally, PeptideForest increases the number of peptide-to-spectrum matches that exhibit a q-value lower than 1% by 25.2 ± 1.6% compared to MS-GF+ data on samples containing mixed HEK and <i>Escherichia coli</i> proteomes. However, an increase in quantity does not necessarily reflect an increase in quality and this is why we devised a novel approach to determine the quality of the assigned spectra through TMT quantification of samples with known ground truths. Thereby, we could show that the increase in PSMs below 1% q-value does not come with a decrease in quantification quality and as such PeptideForest offers a possibility to gain deeper insights into bottom-up proteomics. PeptideForest has been integrated into our pipeline framework Ursgal and can therefore be combined with a wide array of algorithms.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PeptideForest: Semisupervised Machine Learning Integrating Multiple Search Engines for Peptide Identification.\",\"authors\":\"Tristan Ranff, Matthew Dennison, Jeroen Bédorf, Stefan Schulze, Nico Zinn, Marcus Bantscheff, Jasper J R M van Heugten, Christian Fufezan\",\"doi\":\"10.1021/acs.jproteome.4c00686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The first step in bottom-up proteomics is the assignment of measured fragmentation mass spectra to peptide sequences, also known as peptide spectrum matches. In recent years novel algorithms have pushed the assignment to new heights; unfortunately, different algorithms come with different strengths and weaknesses and choosing the appropriate algorithm poses a challenge for the user. Here we introduce PeptideForest, a semisupervised machine learning approach that integrates the assignments of multiple algorithms to train a random forest classifier to alleviate that issue. Additionally, PeptideForest increases the number of peptide-to-spectrum matches that exhibit a q-value lower than 1% by 25.2 ± 1.6% compared to MS-GF+ data on samples containing mixed HEK and <i>Escherichia coli</i> proteomes. However, an increase in quantity does not necessarily reflect an increase in quality and this is why we devised a novel approach to determine the quality of the assigned spectra through TMT quantification of samples with known ground truths. Thereby, we could show that the increase in PSMs below 1% q-value does not come with a decrease in quantification quality and as such PeptideForest offers a possibility to gain deeper insights into bottom-up proteomics. PeptideForest has been integrated into our pipeline framework Ursgal and can therefore be combined with a wide array of algorithms.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00686\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00686","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The first step in bottom-up proteomics is the assignment of measured fragmentation mass spectra to peptide sequences, also known as peptide spectrum matches. In recent years novel algorithms have pushed the assignment to new heights; unfortunately, different algorithms come with different strengths and weaknesses and choosing the appropriate algorithm poses a challenge for the user. Here we introduce PeptideForest, a semisupervised machine learning approach that integrates the assignments of multiple algorithms to train a random forest classifier to alleviate that issue. Additionally, PeptideForest increases the number of peptide-to-spectrum matches that exhibit a q-value lower than 1% by 25.2 ± 1.6% compared to MS-GF+ data on samples containing mixed HEK and Escherichia coli proteomes. However, an increase in quantity does not necessarily reflect an increase in quality and this is why we devised a novel approach to determine the quality of the assigned spectra through TMT quantification of samples with known ground truths. Thereby, we could show that the increase in PSMs below 1% q-value does not come with a decrease in quantification quality and as such PeptideForest offers a possibility to gain deeper insights into bottom-up proteomics. PeptideForest has been integrated into our pipeline framework Ursgal and can therefore be combined with a wide array of algorithms.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".