Qiangjun Hao, John Schossig, Tyler Davide, Adedayo Towolawi, Cheng Zhang, Ping Lu
{"title":"重力驱动超高速静电纺丝生产吸油孔可调乙基纤维素纤维。","authors":"Qiangjun Hao, John Schossig, Tyler Davide, Adedayo Towolawi, Cheng Zhang, Ping Lu","doi":"10.1021/acssuschemeng.4c08259","DOIUrl":null,"url":null,"abstract":"<p><p>Ethyl cellulose (EC) is a biocompatible, renewable, and recyclable material with diverse sources, making it an attractive candidate for industrial applications. Electrospinning has gained significant attention for the production of EC fibers. However, conventional electrospinning methods face challenges such as bead formation, low yield, and the absence of porous internal structures, limiting both the functional performance and scalability. This study presents an optimized approach for producing EC fibers by using a gravity-driven ultrahigh-speed electrospinning (GUHS-ES) system. This system leverages gravity to reshape the Taylor cone morphology during electrospinning, enhancing stability and dramatically increasing throughput. As flow rates increase, the Taylor cone contracts inward, while the tip structure expands and stabilizes, reaching maximum size at ultrahigh flow rates (100-150 mL/h). This unique Taylor cone structure enables a fiber production rate of 24.5 g/h, hundreds of times greater than conventional electrospinning techniques. Another advantage of the GUHS-ES system is its ability to achieve both high diameter uniformity and adjustable porosity. At ultrahigh flow rates, the pore sizes of the EC fibers reached 321 nm. The highly porous structure of EC fibers exhibited an absorption capacity of 56.6 to 110.7 times their weight, exceeding most previously reported oil-absorbing materials and demonstrating high efficacy for rapid waste oil absorption. This green, efficient technology represents a promising advancement for the large-scale production and application of natural polymer fibers with broad implications for sustainable industrial processes.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 1","pages":"507-517"},"PeriodicalIF":7.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gravity-Driven Ultrahigh-Speed Electrospinning for the Production of Ethyl Cellulose Fibers with Tunable Porosity for Oil Absorption.\",\"authors\":\"Qiangjun Hao, John Schossig, Tyler Davide, Adedayo Towolawi, Cheng Zhang, Ping Lu\",\"doi\":\"10.1021/acssuschemeng.4c08259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ethyl cellulose (EC) is a biocompatible, renewable, and recyclable material with diverse sources, making it an attractive candidate for industrial applications. Electrospinning has gained significant attention for the production of EC fibers. However, conventional electrospinning methods face challenges such as bead formation, low yield, and the absence of porous internal structures, limiting both the functional performance and scalability. This study presents an optimized approach for producing EC fibers by using a gravity-driven ultrahigh-speed electrospinning (GUHS-ES) system. This system leverages gravity to reshape the Taylor cone morphology during electrospinning, enhancing stability and dramatically increasing throughput. As flow rates increase, the Taylor cone contracts inward, while the tip structure expands and stabilizes, reaching maximum size at ultrahigh flow rates (100-150 mL/h). This unique Taylor cone structure enables a fiber production rate of 24.5 g/h, hundreds of times greater than conventional electrospinning techniques. Another advantage of the GUHS-ES system is its ability to achieve both high diameter uniformity and adjustable porosity. At ultrahigh flow rates, the pore sizes of the EC fibers reached 321 nm. The highly porous structure of EC fibers exhibited an absorption capacity of 56.6 to 110.7 times their weight, exceeding most previously reported oil-absorbing materials and demonstrating high efficacy for rapid waste oil absorption. This green, efficient technology represents a promising advancement for the large-scale production and application of natural polymer fibers with broad implications for sustainable industrial processes.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 1\",\"pages\":\"507-517\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c08259\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08259","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Gravity-Driven Ultrahigh-Speed Electrospinning for the Production of Ethyl Cellulose Fibers with Tunable Porosity for Oil Absorption.
Ethyl cellulose (EC) is a biocompatible, renewable, and recyclable material with diverse sources, making it an attractive candidate for industrial applications. Electrospinning has gained significant attention for the production of EC fibers. However, conventional electrospinning methods face challenges such as bead formation, low yield, and the absence of porous internal structures, limiting both the functional performance and scalability. This study presents an optimized approach for producing EC fibers by using a gravity-driven ultrahigh-speed electrospinning (GUHS-ES) system. This system leverages gravity to reshape the Taylor cone morphology during electrospinning, enhancing stability and dramatically increasing throughput. As flow rates increase, the Taylor cone contracts inward, while the tip structure expands and stabilizes, reaching maximum size at ultrahigh flow rates (100-150 mL/h). This unique Taylor cone structure enables a fiber production rate of 24.5 g/h, hundreds of times greater than conventional electrospinning techniques. Another advantage of the GUHS-ES system is its ability to achieve both high diameter uniformity and adjustable porosity. At ultrahigh flow rates, the pore sizes of the EC fibers reached 321 nm. The highly porous structure of EC fibers exhibited an absorption capacity of 56.6 to 110.7 times their weight, exceeding most previously reported oil-absorbing materials and demonstrating high efficacy for rapid waste oil absorption. This green, efficient technology represents a promising advancement for the large-scale production and application of natural polymer fibers with broad implications for sustainable industrial processes.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.