Larissa Paza, Wendhy C Vicente, Marília Miotto, Marcel Afonso Provenzi, Daniane Aparecida Netzel, Larissa N Carli, Patrícia B Brondani
{"title":"酶解与壳聚糖纳米颗粒共价结合对聚酰胺6的表面处理。","authors":"Larissa Paza, Wendhy C Vicente, Marília Miotto, Marcel Afonso Provenzi, Daniane Aparecida Netzel, Larissa N Carli, Patrícia B Brondani","doi":"10.1021/acs.biomac.4c01281","DOIUrl":null,"url":null,"abstract":"<p><p>Polyamide (PA) has notable physical and chemical properties and is one of the most versatile synthetic materials in the industrial sector. However, its hydrophobicity creates significant challenges in its beneficiation and modification. Modifications of PA with chitosan nanoparticles (CNPs) can improve its undesired properties but are rarely found in the literature due to the weak interaction between the chemical groups of both structures. Surface hydrolysis mediated by enzymes can mildly improve the PA properties and create reactive sites. These sites can react with CNPs to confer enhanced properties to the fabrics, such as antimicrobial activity and flame retardancy. This study investigated the action of 14 hydrolases in the surface hydrolysis of 100% polyamide 6 (PA 6) fabric. Such an extensive study applying several enzymes for this process is uncommon. Under the optimum conditions, the hydrolyzed fabric was covalently bonded to the CNPs, generating material with reduced bacterial proliferation and flame retardancy properties. The uncommon covalent bond attachment achieved high material durability, even after five washing cycles.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Treatment of Polyamide 6 through Enzymatic Hydrolysis and Covalent Incorporation of Chitosan Nanoparticles.\",\"authors\":\"Larissa Paza, Wendhy C Vicente, Marília Miotto, Marcel Afonso Provenzi, Daniane Aparecida Netzel, Larissa N Carli, Patrícia B Brondani\",\"doi\":\"10.1021/acs.biomac.4c01281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyamide (PA) has notable physical and chemical properties and is one of the most versatile synthetic materials in the industrial sector. However, its hydrophobicity creates significant challenges in its beneficiation and modification. Modifications of PA with chitosan nanoparticles (CNPs) can improve its undesired properties but are rarely found in the literature due to the weak interaction between the chemical groups of both structures. Surface hydrolysis mediated by enzymes can mildly improve the PA properties and create reactive sites. These sites can react with CNPs to confer enhanced properties to the fabrics, such as antimicrobial activity and flame retardancy. This study investigated the action of 14 hydrolases in the surface hydrolysis of 100% polyamide 6 (PA 6) fabric. Such an extensive study applying several enzymes for this process is uncommon. Under the optimum conditions, the hydrolyzed fabric was covalently bonded to the CNPs, generating material with reduced bacterial proliferation and flame retardancy properties. The uncommon covalent bond attachment achieved high material durability, even after five washing cycles.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c01281\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01281","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Surface Treatment of Polyamide 6 through Enzymatic Hydrolysis and Covalent Incorporation of Chitosan Nanoparticles.
Polyamide (PA) has notable physical and chemical properties and is one of the most versatile synthetic materials in the industrial sector. However, its hydrophobicity creates significant challenges in its beneficiation and modification. Modifications of PA with chitosan nanoparticles (CNPs) can improve its undesired properties but are rarely found in the literature due to the weak interaction between the chemical groups of both structures. Surface hydrolysis mediated by enzymes can mildly improve the PA properties and create reactive sites. These sites can react with CNPs to confer enhanced properties to the fabrics, such as antimicrobial activity and flame retardancy. This study investigated the action of 14 hydrolases in the surface hydrolysis of 100% polyamide 6 (PA 6) fabric. Such an extensive study applying several enzymes for this process is uncommon. Under the optimum conditions, the hydrolyzed fabric was covalently bonded to the CNPs, generating material with reduced bacterial proliferation and flame retardancy properties. The uncommon covalent bond attachment achieved high material durability, even after five washing cycles.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.