成熟栎林CO2富集后土壤呼吸快速增加和土壤硝态氮有效性降低

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-01-02 eCollection Date: 2025-01-14 DOI:10.1021/acsomega.4c09495
Angeliki Kourmouli, R Liz Hamilton, Johanna Pihlblad, Rebecca Bartlett, Angus Robert MacKenzie, Iain P Hartley, Sami Ullah, Zongbo Shi
{"title":"成熟栎林CO2富集后土壤呼吸快速增加和土壤硝态氮有效性降低","authors":"Angeliki Kourmouli, R Liz Hamilton, Johanna Pihlblad, Rebecca Bartlett, Angus Robert MacKenzie, Iain P Hartley, Sami Ullah, Zongbo Shi","doi":"10.1021/acsomega.4c09495","DOIUrl":null,"url":null,"abstract":"<p><p>In the future, with elevated atmospheric CO<sub>2</sub> (eCO<sub>2</sub>), forests are expected to increase woody biomass to capture more carbon (C), though this is dependent on soil nutrient availability. While young forests may access unused nutrients by growing into an unexplored soil environment, it is unclear how or if mature forests can adapt belowground under eCO<sub>2</sub>. Soil respiration (<i>R</i> <sub>s</sub>) and nutrient bioavailability are integrative ecosystem measures of below-ground dynamics. At Birmingham's Institute of Forest Research Free Air CO<sub>2</sub> Enrichment (BIFoR FACE) facility, we investigated the effects of eCO<sub>2</sub> (+150 ppm above ambient) on a mature oak forest during the first year of exposure. We observed an annual R<sub>s</sub> increase of ∼21.5%; 996 ± 398 g C m<sup>-2</sup> year<sup>-1</sup> (ambient) to 1210 ± 483 g C m<sup>-2</sup> year<sup>-1</sup> (eCO<sub>2</sub>). The eCO<sub>2</sub> impact was greater on belowground nutrient cycling, with monthly nitrate availability decreasing by up to 36%. These results show that high C uptake resulted in higher soil respiration with a concomitant decrease in the level of soil nitrate during the first year. These belowground responses and their long-term dynamics will have implications for the carbon budget of mature forest ecosystems in changing climate.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 1","pages":"1624-1634"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739980/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid Increase in Soil Respiration and Reduction in Soil Nitrate Availability Following CO<sub>2</sub> Enrichment in a Mature Oak Forest.\",\"authors\":\"Angeliki Kourmouli, R Liz Hamilton, Johanna Pihlblad, Rebecca Bartlett, Angus Robert MacKenzie, Iain P Hartley, Sami Ullah, Zongbo Shi\",\"doi\":\"10.1021/acsomega.4c09495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the future, with elevated atmospheric CO<sub>2</sub> (eCO<sub>2</sub>), forests are expected to increase woody biomass to capture more carbon (C), though this is dependent on soil nutrient availability. While young forests may access unused nutrients by growing into an unexplored soil environment, it is unclear how or if mature forests can adapt belowground under eCO<sub>2</sub>. Soil respiration (<i>R</i> <sub>s</sub>) and nutrient bioavailability are integrative ecosystem measures of below-ground dynamics. At Birmingham's Institute of Forest Research Free Air CO<sub>2</sub> Enrichment (BIFoR FACE) facility, we investigated the effects of eCO<sub>2</sub> (+150 ppm above ambient) on a mature oak forest during the first year of exposure. We observed an annual R<sub>s</sub> increase of ∼21.5%; 996 ± 398 g C m<sup>-2</sup> year<sup>-1</sup> (ambient) to 1210 ± 483 g C m<sup>-2</sup> year<sup>-1</sup> (eCO<sub>2</sub>). The eCO<sub>2</sub> impact was greater on belowground nutrient cycling, with monthly nitrate availability decreasing by up to 36%. These results show that high C uptake resulted in higher soil respiration with a concomitant decrease in the level of soil nitrate during the first year. These belowground responses and their long-term dynamics will have implications for the carbon budget of mature forest ecosystems in changing climate.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 1\",\"pages\":\"1624-1634\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739980/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c09495\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c09495","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

未来,随着大气中二氧化碳(eCO2)的升高,森林有望增加木质生物量以捕获更多的碳(C),尽管这取决于土壤养分的可用性。虽然年轻的森林可以通过生长在未开发的土壤环境中获取未使用的养分,但尚不清楚成熟的森林如何或是否能够在eCO2下适应地下环境。土壤呼吸(R s)和养分生物有效性是地下动态的综合生态系统指标。在伯明翰森林研究所的自由空气CO2富集(BIFoR FACE)设施中,我们调查了eCO2(高于环境浓度150 ppm)在暴露第一年对成熟橡树林的影响。我们观察到Rs的年增长率为21.5%;996±398 g C m-2 year-1 (ambient)至1210±483 g C m-2 year-1 (eCO2)。eCO2对地下养分循环的影响更大,每月硝酸盐可用性下降高达36%。这些结果表明,高碳吸收导致土壤呼吸增加,同时在第一年土壤硝酸盐水平下降。这些地下响应及其长期动态将对气候变化中成熟森林生态系统的碳收支产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid Increase in Soil Respiration and Reduction in Soil Nitrate Availability Following CO2 Enrichment in a Mature Oak Forest.

In the future, with elevated atmospheric CO2 (eCO2), forests are expected to increase woody biomass to capture more carbon (C), though this is dependent on soil nutrient availability. While young forests may access unused nutrients by growing into an unexplored soil environment, it is unclear how or if mature forests can adapt belowground under eCO2. Soil respiration (R s) and nutrient bioavailability are integrative ecosystem measures of below-ground dynamics. At Birmingham's Institute of Forest Research Free Air CO2 Enrichment (BIFoR FACE) facility, we investigated the effects of eCO2 (+150 ppm above ambient) on a mature oak forest during the first year of exposure. We observed an annual Rs increase of ∼21.5%; 996 ± 398 g C m-2 year-1 (ambient) to 1210 ± 483 g C m-2 year-1 (eCO2). The eCO2 impact was greater on belowground nutrient cycling, with monthly nitrate availability decreasing by up to 36%. These results show that high C uptake resulted in higher soil respiration with a concomitant decrease in the level of soil nitrate during the first year. These belowground responses and their long-term dynamics will have implications for the carbon budget of mature forest ecosystems in changing climate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信