应变ZnO微导线中控制压电电压的原生点缺陷。

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2024-12-19 eCollection Date: 2025-01-14 DOI:10.1021/acsomega.4c07595
Kalpak Duddella, Kamila Thompson, Micah Haseman, Leonard J Brillson
{"title":"应变ZnO微导线中控制压电电压的原生点缺陷。","authors":"Kalpak Duddella, Kamila Thompson, Micah Haseman, Leonard J Brillson","doi":"10.1021/acsomega.4c07595","DOIUrl":null,"url":null,"abstract":"<p><p>Piezovoltages generated by ZnO nano/microwire bending and strain enable electronic biogenerators that harvest human body movement to power-implanted biomedical devices. Currently, low voltages generated by these biogenerators limit their use to replace today's biomedical batteries. Electrically charged native point defects inside ZnO microwires can control these macroscopic piezo voltages, generating transverse electric fields that couple with strained wires' lengthwise piezoelectric fields so they redistribute spatially and change voltage output. Cathodoluminescence spectroscopy inside a scanning electron microscope correlates tip voltages directly with native point defect distributions of individual ZnO microwires in three dimensions. Spatial distributions of common Cu<sub>Zn</sub> antisites in ZnO extending throughout their length correlate this defect's acceptor nature and distribution directly with piezoelectric potential, revealing how they can control the tip piezovoltage of ZnO microwire-based nanogenerators, identifying specific defects to increase device output, and suggesting growth and processing treatments to create these defects.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 1","pages":"703-708"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739969/pdf/","citationCount":"0","resultStr":"{\"title\":\"Native Point Defects Controlling Piezoelectric Voltage in Strained ZnO Microwires.\",\"authors\":\"Kalpak Duddella, Kamila Thompson, Micah Haseman, Leonard J Brillson\",\"doi\":\"10.1021/acsomega.4c07595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Piezovoltages generated by ZnO nano/microwire bending and strain enable electronic biogenerators that harvest human body movement to power-implanted biomedical devices. Currently, low voltages generated by these biogenerators limit their use to replace today's biomedical batteries. Electrically charged native point defects inside ZnO microwires can control these macroscopic piezo voltages, generating transverse electric fields that couple with strained wires' lengthwise piezoelectric fields so they redistribute spatially and change voltage output. Cathodoluminescence spectroscopy inside a scanning electron microscope correlates tip voltages directly with native point defect distributions of individual ZnO microwires in three dimensions. Spatial distributions of common Cu<sub>Zn</sub> antisites in ZnO extending throughout their length correlate this defect's acceptor nature and distribution directly with piezoelectric potential, revealing how they can control the tip piezovoltage of ZnO microwire-based nanogenerators, identifying specific defects to increase device output, and suggesting growth and processing treatments to create these defects.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 1\",\"pages\":\"703-708\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739969/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c07595\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c07595","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由ZnO纳米/微线弯曲和应变产生的压电使电子生物发生器能够将人体运动收集到电力植入的生物医学设备中。目前,这些生物发电机产生的低电压限制了它们取代当今生物医学电池的使用。ZnO微导线内部带电的原生点缺陷可以控制这些宏观压电电压,产生横向电场,与张力导线的纵向压电场耦合,使它们在空间上重新分布并改变电压输出。扫描电子显微镜内的阴极发光光谱在三维上直接将尖端电压与单个ZnO微线的原生点缺陷分布联系起来。ZnO中常见CuZn反位的空间分布贯穿其整个长度,将该缺陷的受体性质和分布直接与压电电位联系起来,揭示了它们如何控制ZnO微线纳米发电机的尖端压电,识别特定缺陷以增加器件输出,并提出了产生这些缺陷的生长和加工处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Native Point Defects Controlling Piezoelectric Voltage in Strained ZnO Microwires.

Piezovoltages generated by ZnO nano/microwire bending and strain enable electronic biogenerators that harvest human body movement to power-implanted biomedical devices. Currently, low voltages generated by these biogenerators limit their use to replace today's biomedical batteries. Electrically charged native point defects inside ZnO microwires can control these macroscopic piezo voltages, generating transverse electric fields that couple with strained wires' lengthwise piezoelectric fields so they redistribute spatially and change voltage output. Cathodoluminescence spectroscopy inside a scanning electron microscope correlates tip voltages directly with native point defect distributions of individual ZnO microwires in three dimensions. Spatial distributions of common CuZn antisites in ZnO extending throughout their length correlate this defect's acceptor nature and distribution directly with piezoelectric potential, revealing how they can control the tip piezovoltage of ZnO microwire-based nanogenerators, identifying specific defects to increase device output, and suggesting growth and processing treatments to create these defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信