{"title":"修饰特异性蛋白质组学分析揭示半胱氨酸s -棕榈酰化参与食管癌细胞辐射。","authors":"Qingtao Ni, Chi Pan, Gaohua Han","doi":"10.1021/acsomega.4c09353","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the effects of radiation (RT) on protein and protein S-palmitoylation levels in esophageal cancer (EC) cell lines. EC cells (<i>N</i> = 6) were randomly divided into RT and negative control. The results revealed that 592 proteins were identified in the RT group, including 326 upregulation proteins and 266 downregulation proteins. These differentially expressed proteins were involved in cellular biological processes. S-palmitoylation sequencing analysis revealed that 830 and 899 S-palmitoylation cysteine sites were upregulated and downregulated, respectively. Differential S-palmitoylation proteins were primarily found in cellular processes, anatomical entities, and binding activities. Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein-protein interaction analysis revealed that differential S-palmitoylation proteins are involved in proteoglycans in cancer, shigellosis, EGFR tyrosine kinase inhibitor resistance, nucleocytoplasmic transport, and mineral absorption. In conclusion, this study demonstrated that RT significantly affects protein expression and S-palmitoylation levels in EC cell lines, which has implications for cancer biology-related cellular processes and pathways. These findings enhance understanding of the molecular mechanisms underlying the response of EC cells to RT treatment.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 1","pages":"1541-1550"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740626/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modification-specific Proteomic Analysis Reveals Cysteine S-Palmitoylation Involved in Esophageal Cancer Cell Radiation.\",\"authors\":\"Qingtao Ni, Chi Pan, Gaohua Han\",\"doi\":\"10.1021/acsomega.4c09353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the effects of radiation (RT) on protein and protein S-palmitoylation levels in esophageal cancer (EC) cell lines. EC cells (<i>N</i> = 6) were randomly divided into RT and negative control. The results revealed that 592 proteins were identified in the RT group, including 326 upregulation proteins and 266 downregulation proteins. These differentially expressed proteins were involved in cellular biological processes. S-palmitoylation sequencing analysis revealed that 830 and 899 S-palmitoylation cysteine sites were upregulated and downregulated, respectively. Differential S-palmitoylation proteins were primarily found in cellular processes, anatomical entities, and binding activities. Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein-protein interaction analysis revealed that differential S-palmitoylation proteins are involved in proteoglycans in cancer, shigellosis, EGFR tyrosine kinase inhibitor resistance, nucleocytoplasmic transport, and mineral absorption. In conclusion, this study demonstrated that RT significantly affects protein expression and S-palmitoylation levels in EC cell lines, which has implications for cancer biology-related cellular processes and pathways. These findings enhance understanding of the molecular mechanisms underlying the response of EC cells to RT treatment.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 1\",\"pages\":\"1541-1550\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740626/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c09353\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c09353","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modification-specific Proteomic Analysis Reveals Cysteine S-Palmitoylation Involved in Esophageal Cancer Cell Radiation.
This study aimed to investigate the effects of radiation (RT) on protein and protein S-palmitoylation levels in esophageal cancer (EC) cell lines. EC cells (N = 6) were randomly divided into RT and negative control. The results revealed that 592 proteins were identified in the RT group, including 326 upregulation proteins and 266 downregulation proteins. These differentially expressed proteins were involved in cellular biological processes. S-palmitoylation sequencing analysis revealed that 830 and 899 S-palmitoylation cysteine sites were upregulated and downregulated, respectively. Differential S-palmitoylation proteins were primarily found in cellular processes, anatomical entities, and binding activities. Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein-protein interaction analysis revealed that differential S-palmitoylation proteins are involved in proteoglycans in cancer, shigellosis, EGFR tyrosine kinase inhibitor resistance, nucleocytoplasmic transport, and mineral absorption. In conclusion, this study demonstrated that RT significantly affects protein expression and S-palmitoylation levels in EC cell lines, which has implications for cancer biology-related cellular processes and pathways. These findings enhance understanding of the molecular mechanisms underlying the response of EC cells to RT treatment.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.