Muhammad Safaat, Hendra Saputra, Pugoh Santoso, Toki Taira, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya
{"title":"使用生物相容性离子液体微乳液局部递送人工脂化抗真菌蛋白治疗皮下真菌感染。","authors":"Muhammad Safaat, Hendra Saputra, Pugoh Santoso, Toki Taira, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya","doi":"10.1021/acsami.4c19868","DOIUrl":null,"url":null,"abstract":"<p><p>The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids. Among the MEFs incorporating LysM modified with lauric (C12), myristic (C14), and palmitic (C16) acids, the LysM-C14-loaded MEF emerged as the most promising candidate, exhibiting potent antifungal activity against <i>Trichoderma viride</i> growing actively beneath the skin. The stability of the MEFs was investigated after a 28 day storage period at room temperature, and both LysM-C14- and LysM-C16-loaded MEFs retained comparable antifungal activity with that of the freshly prepared MEFs. These results highlight the considerable potential of LysM-lipid-loaded MEFs as effective topical antifungal agents.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 2","pages":"3062-3071"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topical Delivery of Artificial Lipidated Antifungal Proteins for the Treatment of Subcutaneous Fungal Infections Using a Biocompatible Ionic Liquid-Based Microemulsion.\",\"authors\":\"Muhammad Safaat, Hendra Saputra, Pugoh Santoso, Toki Taira, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya\",\"doi\":\"10.1021/acsami.4c19868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids. Among the MEFs incorporating LysM modified with lauric (C12), myristic (C14), and palmitic (C16) acids, the LysM-C14-loaded MEF emerged as the most promising candidate, exhibiting potent antifungal activity against <i>Trichoderma viride</i> growing actively beneath the skin. The stability of the MEFs was investigated after a 28 day storage period at room temperature, and both LysM-C14- and LysM-C16-loaded MEFs retained comparable antifungal activity with that of the freshly prepared MEFs. These results highlight the considerable potential of LysM-lipid-loaded MEFs as effective topical antifungal agents.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 2\",\"pages\":\"3062-3071\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c19868\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19868","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Topical Delivery of Artificial Lipidated Antifungal Proteins for the Treatment of Subcutaneous Fungal Infections Using a Biocompatible Ionic Liquid-Based Microemulsion.
The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids. Among the MEFs incorporating LysM modified with lauric (C12), myristic (C14), and palmitic (C16) acids, the LysM-C14-loaded MEF emerged as the most promising candidate, exhibiting potent antifungal activity against Trichoderma viride growing actively beneath the skin. The stability of the MEFs was investigated after a 28 day storage period at room temperature, and both LysM-C14- and LysM-C16-loaded MEFs retained comparable antifungal activity with that of the freshly prepared MEFs. These results highlight the considerable potential of LysM-lipid-loaded MEFs as effective topical antifungal agents.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.