Xifeng Liu, Areonna C Schreiber, Maria D Astudillo Potes, Babak Dashtdar, Abdelrahman M Hamouda, Asghar Rezaei, Benjamin D Elder, Lichun Lu
{"title":"骨酶反应-可生物降解聚(富马酸丙烯)和聚己内酯聚磷酸酯树状大分子通过点击化学交联用于骨组织工程。","authors":"Xifeng Liu, Areonna C Schreiber, Maria D Astudillo Potes, Babak Dashtdar, Abdelrahman M Hamouda, Asghar Rezaei, Benjamin D Elder, Lichun Lu","doi":"10.1021/acs.biomac.4c00999","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional polymer systems often rely on toxic initiators or catalysts for cross-linking, posing significant safety risks. For bone tissue engineering, another issue is that the scaffolds often take a longer time to degrade, inconsistent with bone formation pace. Here, we developed an enzyme-responsive biodegradable poly(propylene fumarate) (PPF) and polycaprolactone (PCL) polyphosphoester (PPE) dendrimer cross-linked utilizing click chemistry (EnzDeg-click-PFCLPE scaffold) for enhanced biocompatibility and degradation. The strain-promoted alkyne-azide cycloaddition (SPAAC) offers high efficiency and biocompatibility without harmful agents. The polyphosphoesters render polymer cleavage responsive to alkaline phosphatase (ALP) enzyme in bone formation, ensuring facilitated scaffold biodegradation. The <i>in vitro</i> testing confirmed biocompatibility, enzyme-responsive degradation, and capability to support stem cell differentiation. Further <i>in vivo</i> implantation in rat demonstrated bone regeneration and scaffold integration. In summary, this polymer system combining click chemistry with ALP-responsive biodegradation ensures initial bone support and facilitates scaffold degradation synchronized with the natural bone healing process.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone Enzyme-Responsive Biodegradable Poly(propylene fumarate) and Polycaprolactone Polyphosphoester Dendrimer Cross-Linked via Click Chemistry for Bone Tissue Engineering.\",\"authors\":\"Xifeng Liu, Areonna C Schreiber, Maria D Astudillo Potes, Babak Dashtdar, Abdelrahman M Hamouda, Asghar Rezaei, Benjamin D Elder, Lichun Lu\",\"doi\":\"10.1021/acs.biomac.4c00999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional polymer systems often rely on toxic initiators or catalysts for cross-linking, posing significant safety risks. For bone tissue engineering, another issue is that the scaffolds often take a longer time to degrade, inconsistent with bone formation pace. Here, we developed an enzyme-responsive biodegradable poly(propylene fumarate) (PPF) and polycaprolactone (PCL) polyphosphoester (PPE) dendrimer cross-linked utilizing click chemistry (EnzDeg-click-PFCLPE scaffold) for enhanced biocompatibility and degradation. The strain-promoted alkyne-azide cycloaddition (SPAAC) offers high efficiency and biocompatibility without harmful agents. The polyphosphoesters render polymer cleavage responsive to alkaline phosphatase (ALP) enzyme in bone formation, ensuring facilitated scaffold biodegradation. The <i>in vitro</i> testing confirmed biocompatibility, enzyme-responsive degradation, and capability to support stem cell differentiation. Further <i>in vivo</i> implantation in rat demonstrated bone regeneration and scaffold integration. In summary, this polymer system combining click chemistry with ALP-responsive biodegradation ensures initial bone support and facilitates scaffold degradation synchronized with the natural bone healing process.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00999\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00999","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bone Enzyme-Responsive Biodegradable Poly(propylene fumarate) and Polycaprolactone Polyphosphoester Dendrimer Cross-Linked via Click Chemistry for Bone Tissue Engineering.
Traditional polymer systems often rely on toxic initiators or catalysts for cross-linking, posing significant safety risks. For bone tissue engineering, another issue is that the scaffolds often take a longer time to degrade, inconsistent with bone formation pace. Here, we developed an enzyme-responsive biodegradable poly(propylene fumarate) (PPF) and polycaprolactone (PCL) polyphosphoester (PPE) dendrimer cross-linked utilizing click chemistry (EnzDeg-click-PFCLPE scaffold) for enhanced biocompatibility and degradation. The strain-promoted alkyne-azide cycloaddition (SPAAC) offers high efficiency and biocompatibility without harmful agents. The polyphosphoesters render polymer cleavage responsive to alkaline phosphatase (ALP) enzyme in bone formation, ensuring facilitated scaffold biodegradation. The in vitro testing confirmed biocompatibility, enzyme-responsive degradation, and capability to support stem cell differentiation. Further in vivo implantation in rat demonstrated bone regeneration and scaffold integration. In summary, this polymer system combining click chemistry with ALP-responsive biodegradation ensures initial bone support and facilitates scaffold degradation synchronized with the natural bone healing process.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.