{"title":"具有增强止血和抗菌性能的可生物降解聚合物微球,用于伤口愈合。","authors":"Xuelian Hu, Sai Li, Yuji Pu, Bin He","doi":"10.1021/acs.biomac.4c01545","DOIUrl":null,"url":null,"abstract":"<p><p>Hemostasis is the initial step in wound healing, yet significant challenges, such as massive bleeding and infection, often arise. In this study, we developed amphiphilic biodegradable polyester-based segmented polyurethane (SPU) microspheres modified with epigallocatechin gallate (EGCG)-Ag nanoparticles and calcium-alginate cross-linking shell, combining blood absorption with the pro-coagulation properties of Ca<sup>2+</sup> and the negative charge of EGCG for synergistic hemostatic effects across various stages of the coagulation cascade. The in vitro blood clotting time of the SPU@EAg@CaAlg microsphere (328.7 s) was reduced by half compared to the SPU microsphere (685.0 s). SPU@EAg@CaAlg exhibited a reduced hemostatic time and blood loss in three rat hemostatic models. Additionally, EGCG-Ag nanoparticles imparted strong antibacterial and anti-inflammatory properties both in vitro and in vivo. In vivo infected wound model demonstrated that SPU@EAg@CaAlg effectively eliminated bacteria and reduced the levels of pro-inflammatory factors, thereby promoting wound healing. Thus, the modified SPU microspheres present a promising candidate for effective hemostatic applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable Polymeric Microspheres with Enhanced Hemostatic and Antibacterial Properties for Wound Healing.\",\"authors\":\"Xuelian Hu, Sai Li, Yuji Pu, Bin He\",\"doi\":\"10.1021/acs.biomac.4c01545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hemostasis is the initial step in wound healing, yet significant challenges, such as massive bleeding and infection, often arise. In this study, we developed amphiphilic biodegradable polyester-based segmented polyurethane (SPU) microspheres modified with epigallocatechin gallate (EGCG)-Ag nanoparticles and calcium-alginate cross-linking shell, combining blood absorption with the pro-coagulation properties of Ca<sup>2+</sup> and the negative charge of EGCG for synergistic hemostatic effects across various stages of the coagulation cascade. The in vitro blood clotting time of the SPU@EAg@CaAlg microsphere (328.7 s) was reduced by half compared to the SPU microsphere (685.0 s). SPU@EAg@CaAlg exhibited a reduced hemostatic time and blood loss in three rat hemostatic models. Additionally, EGCG-Ag nanoparticles imparted strong antibacterial and anti-inflammatory properties both in vitro and in vivo. In vivo infected wound model demonstrated that SPU@EAg@CaAlg effectively eliminated bacteria and reduced the levels of pro-inflammatory factors, thereby promoting wound healing. Thus, the modified SPU microspheres present a promising candidate for effective hemostatic applications.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c01545\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01545","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Biodegradable Polymeric Microspheres with Enhanced Hemostatic and Antibacterial Properties for Wound Healing.
Hemostasis is the initial step in wound healing, yet significant challenges, such as massive bleeding and infection, often arise. In this study, we developed amphiphilic biodegradable polyester-based segmented polyurethane (SPU) microspheres modified with epigallocatechin gallate (EGCG)-Ag nanoparticles and calcium-alginate cross-linking shell, combining blood absorption with the pro-coagulation properties of Ca2+ and the negative charge of EGCG for synergistic hemostatic effects across various stages of the coagulation cascade. The in vitro blood clotting time of the SPU@EAg@CaAlg microsphere (328.7 s) was reduced by half compared to the SPU microsphere (685.0 s). SPU@EAg@CaAlg exhibited a reduced hemostatic time and blood loss in three rat hemostatic models. Additionally, EGCG-Ag nanoparticles imparted strong antibacterial and anti-inflammatory properties both in vitro and in vivo. In vivo infected wound model demonstrated that SPU@EAg@CaAlg effectively eliminated bacteria and reduced the levels of pro-inflammatory factors, thereby promoting wound healing. Thus, the modified SPU microspheres present a promising candidate for effective hemostatic applications.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.