抗her2双药抗体-药物偶联物的模块化合成证明了更高的毒性。

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Christine S Nervig, Megan Rice, Marcello Marelli, R James Christie, Shawn C Owen
{"title":"抗her2双药抗体-药物偶联物的模块化合成证明了更高的毒性。","authors":"Christine S Nervig, Megan Rice, Marcello Marelli, R James Christie, Shawn C Owen","doi":"10.1021/acs.bioconjchem.4c00398","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies have gained clinical success in the last two decades for the targeted delivery of highly toxic small molecule chemotherapeutics. Yet antibody-drug conjugates (ADCs) often fail in the clinic due to the development of resistance. The delivery of two mechanistically distinct small molecule drugs on one antibody is of increasing interest to overcome these challenges with single-drug ADCs. We have developed a modular synthetic strategy for the construction of a library of 19 dual-drug ADCs where drugs are conjugated through unnatural cyclopentadiene-containing amino acids and native cysteine residues on an anti-HER2 trastuzumab scaffold. Importantly, this strategy utilizes the same functional group on the linker-drug construct; this allows for the facile addition of drugs at either conjugation site and enables the evaluation of different drug-to-antibody ratios and combinations of drug pairs. We tested the library on high- and mid-HER2 expressing cell lines and observed increased toxicity in several dual-drug ADCs compared with single-drug constructs. The strategy developed herein provides a method for the facile synthesis, characterization, and evaluation of dual-payload ADCs. Simultaneous delivery of combinations of drugs with distinct mechanisms of action is critical for the next generation of targeted drug delivery.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Synthesis of Anti-HER2 Dual-Drug Antibody-Drug Conjugates Demonstrating Improved Toxicity.\",\"authors\":\"Christine S Nervig, Megan Rice, Marcello Marelli, R James Christie, Shawn C Owen\",\"doi\":\"10.1021/acs.bioconjchem.4c00398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibodies have gained clinical success in the last two decades for the targeted delivery of highly toxic small molecule chemotherapeutics. Yet antibody-drug conjugates (ADCs) often fail in the clinic due to the development of resistance. The delivery of two mechanistically distinct small molecule drugs on one antibody is of increasing interest to overcome these challenges with single-drug ADCs. We have developed a modular synthetic strategy for the construction of a library of 19 dual-drug ADCs where drugs are conjugated through unnatural cyclopentadiene-containing amino acids and native cysteine residues on an anti-HER2 trastuzumab scaffold. Importantly, this strategy utilizes the same functional group on the linker-drug construct; this allows for the facile addition of drugs at either conjugation site and enables the evaluation of different drug-to-antibody ratios and combinations of drug pairs. We tested the library on high- and mid-HER2 expressing cell lines and observed increased toxicity in several dual-drug ADCs compared with single-drug constructs. The strategy developed herein provides a method for the facile synthesis, characterization, and evaluation of dual-payload ADCs. Simultaneous delivery of combinations of drugs with distinct mechanisms of action is critical for the next generation of targeted drug delivery.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.4c00398\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00398","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

抗体在过去二十年中获得了临床成功,用于靶向递送高毒性小分子化疗药物。然而,由于耐药性的发展,抗体-药物偶联物(adc)在临床上经常失败。在一种抗体上递送两种机制不同的小分子药物是克服这些挑战的单药adc的兴趣日益增加。我们开发了一种模块化合成策略,用于构建19个双药adc库,其中药物通过非天然含环戊二烯氨基酸和天然半胱氨酸残基在抗her2曲妥珠单抗支架上偶联。重要的是,这种策略在连接物-药物结构上利用了相同的官能团;这允许在任一偶联位点方便地添加药物,并能够评估不同的药物-抗体比率和药物对的组合。我们在her2高表达和中等表达的细胞系上测试了该文库,并观察到与单药构建的adc相比,几种双药adc的毒性增加。本文开发的策略为双载荷adc的简便合成、表征和评估提供了一种方法。同时递送具有不同作用机制的药物组合对于下一代靶向药物递送至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular Synthesis of Anti-HER2 Dual-Drug Antibody-Drug Conjugates Demonstrating Improved Toxicity.

Antibodies have gained clinical success in the last two decades for the targeted delivery of highly toxic small molecule chemotherapeutics. Yet antibody-drug conjugates (ADCs) often fail in the clinic due to the development of resistance. The delivery of two mechanistically distinct small molecule drugs on one antibody is of increasing interest to overcome these challenges with single-drug ADCs. We have developed a modular synthetic strategy for the construction of a library of 19 dual-drug ADCs where drugs are conjugated through unnatural cyclopentadiene-containing amino acids and native cysteine residues on an anti-HER2 trastuzumab scaffold. Importantly, this strategy utilizes the same functional group on the linker-drug construct; this allows for the facile addition of drugs at either conjugation site and enables the evaluation of different drug-to-antibody ratios and combinations of drug pairs. We tested the library on high- and mid-HER2 expressing cell lines and observed increased toxicity in several dual-drug ADCs compared with single-drug constructs. The strategy developed herein provides a method for the facile synthesis, characterization, and evaluation of dual-payload ADCs. Simultaneous delivery of combinations of drugs with distinct mechanisms of action is critical for the next generation of targeted drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信