Peng Liu, Linqing Du, Fang Luan, Chuanwei Shi, Yeping Liu, Zhexu Gai, Fei Yang, Yanzhao Yang
{"title":"多功能纳米酶与基于适配体的比例荧光和比色双重检测前列腺特异性抗原。","authors":"Peng Liu, Linqing Du, Fang Luan, Chuanwei Shi, Yeping Liu, Zhexu Gai, Fei Yang, Yanzhao Yang","doi":"10.1021/acsami.4c22799","DOIUrl":null,"url":null,"abstract":"<p><p>The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC. In this system, R-CQDs integrate with Fe-NC to provide a steady reference red fluorescence signal, while Fe-NC serves as the catalytic active site. The adsorption of 6-carboxyfluorescein-labeled aptamers (FAM-apt) significantly enhanced the electron transfer capability of R-CQDs@Fe-NC, enhancing its catalytic performance and resulting in increased oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Concurrently, the green fluorescence of FAM-apt diminishes due to energy competition, photoinduced electron transfer, and the internal filtration effect by R-CQDs@Fe-NC, while the red fluorescence from R-CQDs@Fe-NC remains stable. Upon recognizing and binding to prostate-specific antigen (PSA), FAM-apt detaches from the surface of R-CQDs@Fe-NC. This leads to simultaneous variations in both the fluorescence signal of the system and the colorimetric signal of TMB. Based on these properties, a colorimetric/fluorescence dual-mode detection method for PSA was established, with detection limits of 0.054 and 0.16 ng/mL, respectively. Furthermore, a smartphone-based sensing device facilitated rapid and convenient detection. This study presents a multisignal output sensing strategy and a simple capillary sensing device, presenting a promising approach for PSA diagnostic analysis and the potential detection of other biomarkers.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"7553-7567"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Nanozyme with Aptamer-Based Ratiometric Fluorescent and Colorimetric Dual Detection of Prostate-Specific Antigen.\",\"authors\":\"Peng Liu, Linqing Du, Fang Luan, Chuanwei Shi, Yeping Liu, Zhexu Gai, Fei Yang, Yanzhao Yang\",\"doi\":\"10.1021/acsami.4c22799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC. In this system, R-CQDs integrate with Fe-NC to provide a steady reference red fluorescence signal, while Fe-NC serves as the catalytic active site. The adsorption of 6-carboxyfluorescein-labeled aptamers (FAM-apt) significantly enhanced the electron transfer capability of R-CQDs@Fe-NC, enhancing its catalytic performance and resulting in increased oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Concurrently, the green fluorescence of FAM-apt diminishes due to energy competition, photoinduced electron transfer, and the internal filtration effect by R-CQDs@Fe-NC, while the red fluorescence from R-CQDs@Fe-NC remains stable. Upon recognizing and binding to prostate-specific antigen (PSA), FAM-apt detaches from the surface of R-CQDs@Fe-NC. This leads to simultaneous variations in both the fluorescence signal of the system and the colorimetric signal of TMB. Based on these properties, a colorimetric/fluorescence dual-mode detection method for PSA was established, with detection limits of 0.054 and 0.16 ng/mL, respectively. Furthermore, a smartphone-based sensing device facilitated rapid and convenient detection. This study presents a multisignal output sensing strategy and a simple capillary sensing device, presenting a promising approach for PSA diagnostic analysis and the potential detection of other biomarkers.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"7553-7567\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c22799\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22799","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multifunctional Nanozyme with Aptamer-Based Ratiometric Fluorescent and Colorimetric Dual Detection of Prostate-Specific Antigen.
The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC. In this system, R-CQDs integrate with Fe-NC to provide a steady reference red fluorescence signal, while Fe-NC serves as the catalytic active site. The adsorption of 6-carboxyfluorescein-labeled aptamers (FAM-apt) significantly enhanced the electron transfer capability of R-CQDs@Fe-NC, enhancing its catalytic performance and resulting in increased oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Concurrently, the green fluorescence of FAM-apt diminishes due to energy competition, photoinduced electron transfer, and the internal filtration effect by R-CQDs@Fe-NC, while the red fluorescence from R-CQDs@Fe-NC remains stable. Upon recognizing and binding to prostate-specific antigen (PSA), FAM-apt detaches from the surface of R-CQDs@Fe-NC. This leads to simultaneous variations in both the fluorescence signal of the system and the colorimetric signal of TMB. Based on these properties, a colorimetric/fluorescence dual-mode detection method for PSA was established, with detection limits of 0.054 and 0.16 ng/mL, respectively. Furthermore, a smartphone-based sensing device facilitated rapid and convenient detection. This study presents a multisignal output sensing strategy and a simple capillary sensing device, presenting a promising approach for PSA diagnostic analysis and the potential detection of other biomarkers.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.