Hye Young Lee, Young-Ju Oh, Eunseo Joo, Soryeong Jeong, Jinhyeok Pyo, SeungNam Cha, Sangyeon Pak, Bongjun Kim
{"title":"具有可调负跨导特性的混合维半导体三元电路。","authors":"Hye Young Lee, Young-Ju Oh, Eunseo Joo, Soryeong Jeong, Jinhyeok Pyo, SeungNam Cha, Sangyeon Pak, Bongjun Kim","doi":"10.1021/acsami.4c19428","DOIUrl":null,"url":null,"abstract":"<p><p>Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS<sub>2</sub> where the SWCNT layer completely covers the MoS<sub>2</sub> layer. In particular, SWCNTs are inkjet printed to form heterojunctions with MoS<sub>2</sub> grown by chemical vapor deposition (CVD), and both inkjet printing and CVD are fully scalable device fabrication methods for low-dimensional materials. In addition, the NTC characteristics of heterojunction field-effect transistors (H-FETs) are explained based on the electrical characteristics of individual SWCNT and MoS<sub>2</sub> channels. By adjustment of the p-channel characteristics in H-FETs by exploiting the advantages of the inkjet printing technology, the widths of the NTC regions are easily adjusted accordingly. The extended NTC region enables stable middle logic state operations of low-dimensional semiconductors-based ternary inverters over a sufficiently wide input voltage range.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"6774-6782"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed-Dimensional Semiconductors-Based Ternary Circuits with Tunable Negative Transconductance Characteristics.\",\"authors\":\"Hye Young Lee, Young-Ju Oh, Eunseo Joo, Soryeong Jeong, Jinhyeok Pyo, SeungNam Cha, Sangyeon Pak, Bongjun Kim\",\"doi\":\"10.1021/acsami.4c19428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS<sub>2</sub> where the SWCNT layer completely covers the MoS<sub>2</sub> layer. In particular, SWCNTs are inkjet printed to form heterojunctions with MoS<sub>2</sub> grown by chemical vapor deposition (CVD), and both inkjet printing and CVD are fully scalable device fabrication methods for low-dimensional materials. In addition, the NTC characteristics of heterojunction field-effect transistors (H-FETs) are explained based on the electrical characteristics of individual SWCNT and MoS<sub>2</sub> channels. By adjustment of the p-channel characteristics in H-FETs by exploiting the advantages of the inkjet printing technology, the widths of the NTC regions are easily adjusted accordingly. The extended NTC region enables stable middle logic state operations of low-dimensional semiconductors-based ternary inverters over a sufficiently wide input voltage range.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"6774-6782\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c19428\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19428","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mixed-Dimensional Semiconductors-Based Ternary Circuits with Tunable Negative Transconductance Characteristics.
Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS2 where the SWCNT layer completely covers the MoS2 layer. In particular, SWCNTs are inkjet printed to form heterojunctions with MoS2 grown by chemical vapor deposition (CVD), and both inkjet printing and CVD are fully scalable device fabrication methods for low-dimensional materials. In addition, the NTC characteristics of heterojunction field-effect transistors (H-FETs) are explained based on the electrical characteristics of individual SWCNT and MoS2 channels. By adjustment of the p-channel characteristics in H-FETs by exploiting the advantages of the inkjet printing technology, the widths of the NTC regions are easily adjusted accordingly. The extended NTC region enables stable middle logic state operations of low-dimensional semiconductors-based ternary inverters over a sufficiently wide input voltage range.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.