{"title":"解读果胶:对其起源、加工和应用前景的全面概述。","authors":"Guoqi Dang, Jiaheng Li, Chang Yin, Wenxing Wang, Kaiyi Zhang, Ruqing Zhong, Liang Chen, Hongfu Zhang, Martine Schroyen","doi":"10.1021/acsomega.4c01843","DOIUrl":null,"url":null,"abstract":"<p><p>Pectin is an acidic heteropolysaccharide, a natural high molecular weight compound primarily found in higher plants. It consists of four major structural domains: homogalacturonan (HG), rhamnogalacturonan II (RG-II), rhamnogalacturonan I (RG-I), and xylogalacturonan (XGA). Various methods are currently employed for pectin extraction, including acid extraction, microbial fermentation, microwave-assisted extraction, and ion extraction, each with unique advantages and disadvantages. Pectin is sourced from fruits and vegetables, such as citrus fruits, apples, beets, and carrots. In terms of regulating human health, pectin enhances antioxidant activity, promotes beneficial microorganisms, and stimulates the production of short-chain fatty acids (SCFAs) through microbial metabolism. Additionally, pectin interacts directly with the mucosa, inhibits Toll-like receptor 2 (TLR2) signaling, and modifies the glycosylation of intestinal mucosal proteins. In disease models, pectin shows preventive and therapeutic effects in inflammatory bowel disease, type 2 diabetes, obesity, cardiovascular disease, and cancer. This review covers recent research, summarizing the sources and extraction methods of pectin, and emphasizes its role as a modulator of human health.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 1","pages":"1-15"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740133/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering Pectin: A Comprehensive Overview of Its Origins, Processing, and Promising Utility.\",\"authors\":\"Guoqi Dang, Jiaheng Li, Chang Yin, Wenxing Wang, Kaiyi Zhang, Ruqing Zhong, Liang Chen, Hongfu Zhang, Martine Schroyen\",\"doi\":\"10.1021/acsomega.4c01843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pectin is an acidic heteropolysaccharide, a natural high molecular weight compound primarily found in higher plants. It consists of four major structural domains: homogalacturonan (HG), rhamnogalacturonan II (RG-II), rhamnogalacturonan I (RG-I), and xylogalacturonan (XGA). Various methods are currently employed for pectin extraction, including acid extraction, microbial fermentation, microwave-assisted extraction, and ion extraction, each with unique advantages and disadvantages. Pectin is sourced from fruits and vegetables, such as citrus fruits, apples, beets, and carrots. In terms of regulating human health, pectin enhances antioxidant activity, promotes beneficial microorganisms, and stimulates the production of short-chain fatty acids (SCFAs) through microbial metabolism. Additionally, pectin interacts directly with the mucosa, inhibits Toll-like receptor 2 (TLR2) signaling, and modifies the glycosylation of intestinal mucosal proteins. In disease models, pectin shows preventive and therapeutic effects in inflammatory bowel disease, type 2 diabetes, obesity, cardiovascular disease, and cancer. This review covers recent research, summarizing the sources and extraction methods of pectin, and emphasizes its role as a modulator of human health.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740133/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c01843\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c01843","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deciphering Pectin: A Comprehensive Overview of Its Origins, Processing, and Promising Utility.
Pectin is an acidic heteropolysaccharide, a natural high molecular weight compound primarily found in higher plants. It consists of four major structural domains: homogalacturonan (HG), rhamnogalacturonan II (RG-II), rhamnogalacturonan I (RG-I), and xylogalacturonan (XGA). Various methods are currently employed for pectin extraction, including acid extraction, microbial fermentation, microwave-assisted extraction, and ion extraction, each with unique advantages and disadvantages. Pectin is sourced from fruits and vegetables, such as citrus fruits, apples, beets, and carrots. In terms of regulating human health, pectin enhances antioxidant activity, promotes beneficial microorganisms, and stimulates the production of short-chain fatty acids (SCFAs) through microbial metabolism. Additionally, pectin interacts directly with the mucosa, inhibits Toll-like receptor 2 (TLR2) signaling, and modifies the glycosylation of intestinal mucosal proteins. In disease models, pectin shows preventive and therapeutic effects in inflammatory bowel disease, type 2 diabetes, obesity, cardiovascular disease, and cancer. This review covers recent research, summarizing the sources and extraction methods of pectin, and emphasizes its role as a modulator of human health.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.